Variability study of immune status modified by polymorphic genetic profile in women with pregnancy loss under hydroxybenzene exposure

Cover Page

Cite item

Abstract

The study was performed in Perm, an industrially developed Russian city where hydroxybenzene concentrations are excessive due to dust and gaseous emissions from non-ferrous metallurgic plants. Their concentrations exceed average daily and single maximally permissible amounts. Hydroxybenzene and its derivatives are hormone-like substances, thus being hazardous to female reproductive system. The goal of our study was to analyze variability of immune state influenced by polymorphic genetic profile of women with pregnancy loss under hydroxybenzene exposure. Chemical analysis of ambient air quality was performed according to MG 4.1.617-96 regulations. Biological samples were taken from 129 women with reproductive disorders at their fertile age during the five-year observation period. Hydroxybenzene contents in blood were detected with gas chromatography with inductively coupled plasma. The test group 1 included women with reproductive disorders and phenol contents in blood exceeding the reference level (> 0.016 mg/cm3 ). Test group 2 consisted of women with reproductive disorders and phenol contents in blood within standard ranges. The control group 1 consisted of conditionally healthy women with phenol contents in their blood being higher than 0.016 mg/cm3 . Control group 2 included conditionally healthy women with phenol contents in their blood corresponding to the standard values. Serotonin content in blood serum considered catecholamine regulation marker was estimated with ELISA technique; phenol-specific IgG contents were measured by means of modified competitive ELISA method. PCR technique was used for detection of ACTN3 rs1815739 gene polymorphism associated with catecholamine metabolism. We found that a half of the total study group were exposed to phenol and cresols at concentrations > 1.0 MPC average daily and single maximal dose. Incidence of endometriosis among them tended to increase over the examined 5-year periodL this disorder is known to contribute to pregnancy loss. Chemical analysis of blood allowed us to reveal phenol contamination in all the women to varying degrees. Regression analysis allowed to reveal a significant dependence between phenol contents in blood and phenol-specific IgG, as well as significant correlation between blood serotonin contents and cresols concentrations (p < 0.05). Kruskal–Wallis test revealed significant intergroup differences by serotonin levels. There were significant differences between the test groups 1 and 2 by serotonin contents (at p < 0.0083 with Bonferroni correction). Frequencies of ACTN3 rs1815739 genotypes, using a multiplicative model, allowed us to assign T allele to the factors contributing to risk of reproductive losses induced by biological media contaminated with phenol in excess. Cross-classification analysis revealed a causal relationship between serotonin contents and ACTN3 rs1815739 genotype.

About the authors

O. A. Kazakova

Federal Research Center for Medical and Preventive Health Risk Management Technologies

Author for correspondence.
Email: chakina2011@yandex.ru
ORCID iD: 0000-0002-0114-3930

Kazakova Olga A., Junior Research Associate, Laboratory of Immunogenetics

614045, Perm, Monastyrskaya str., 82

Russian Federation

O. V. Dolgikh

Federal Research Center for Medical and Preventive Health Risk Management Technologies

Email: oleg@fcrisk.ru
ORCID iD: 0000-0003-4860-3145

PhD, MD (Medicine), Professor, Head, Department of Immunological Methods of Diagnostics

Perm

References

  1. Бадмаева С.Э., Циммерман В.И. Антропогенное загрязнение атмосферного воздуха городов красноярского края // Вестник КРАСГАУ, 2015. № 2 (101). С. 27-32.
  2. Варгузина М.С., Бородкина Т.А. Основные источники загрязнения атмосферного воздуха в Воронежской области // Территория науки, 2014. № 1. C. 110-119.
  3. Долгих О.В., Казакова О.А., Кривцов А.В. Оценка экспрессии CD127- и CD95+ и генетического профиля женщин репродуктивного возраста, экспонированных фенолом // Российский иммунологический журнал, 2019. Т. 13 (22), № 3. C. 1125-1128.
  4. Клейн С.В., Вековшинина С.А., Криулина Н.В. Гигиеническая оценка качества атмосферного воздуха в зоне воздействия источников выбросы фенола и крезолов // Известия Самарского научного центра Российской академии наук, 2012. Т. 14, № 5 (3). C. 600-603.
  5. Морозова Л.А., Родина С.А., Ведеева А.А. Анализ динамики источников загрязнения атмосферного воздуха Астраханской области // Конфликт природопользования: pоль в эволюции ноосферы. Материалы Международной научно-практической конференции, 2019. C. 58-62.
  6. Никитин А.И. Гормоноподобные ксенобиотики и их роль в патологии репродуктивной функции человека // Экология человека, 2006. № 2. C. 17-23.
  7. Никитин А.И. Гормоноподобные загрязнители биосферы и их влияние на репродуктивную функцию человека // Биосфера, 2009. C. 218-229.
  8. Постников В.П. Прогнозирование загрязнения атмосферного воздуха города Перми // Вестник Пермского национального исследовательского политехнического университета. Социально-экономические науки, 2014. № 22. C. 125-132
  9. Предеина Р.А., Бубнова О.А., Вдовина Н.А., Варанкина А.В. Иммунные и генетические механизмы невынашивания в условиях экспозиции гидроксилированными бензолами // Российский иммунологический журнал, 2014. Т. 8 (17). № 3. С. 369-372.
  10. Рябченко О.И., Зачиняев Я.В. Охрана и мониторинг атмосферного воздуха-приоритетные направления сервиса экосситем Санкт-Петербурга и Ленинградской области // Технико-технологические проблемы сервиса, 2014. № 2 (28). C. 34-40.
  11. Чернов В.О., Артымук Н.В., Данилова Л.Н. Гормоноподобные ксенобиотики и гинекологические проблемы. Обзор литературы // Мать и дитя в Кузбассе, 2018. № 2 (73). C. 20-26.
  12. Aker A.M., Ferquson K.K., Rosario Z.Y., Mukherjee B., Alshawabkeh A.N., Calafat A.M., Cordero J.F., Meeker J.D. A repeated measures study of phenol, paraben and Triclocarban urinary biomarkers and circulating maternal hormones during gestation in the Puerto Rico PROTECT cohort. Environ. Health, 2019, Vol. 18, no. 1, 28. doi: 10.1186/s12940-019-0459-5.
  13. Amaro A.A., Esposito A.I., Mirisola V., Mehilli A., Rosano C., Noonan D.M., Albinib A., Pfeffer U., Angelini G. Endocrine disruptor agent nonyl phenol exerts an estrogen-like transcriptional activity on estrogen receptor positive breast cancer cells. Curr. Med. Chem., 2014, Vol. 21, no. 5, pp. 630-640.
  14. Emoto Y., Yoshizawa K., Shikata N., Tsubura A., Nagasaki Y. Autopsy report for chemical burns cresol solution. Exp. Toxicol. Pathol., 2016, Vol. 68, no. 1, pp. 99-102.
  15. Fatihi S., Mols P. About a cresol intoxication. Rev. Med. Brux., 2018, Vol. 39, no. 3, pp. 150-154.
  16. Michalowicz J., Duda W. Phenols – sources and toxicity. Pol. J. Environ. Stud., 2007, Vol. 16, no. 3, pp. 347-362.
  17. Toxicological review of phenol (Cas No.108-95-2) U.S. Environmental Protection Agency Washington D.C, 2002, 213 p. Available at: https://cfpub.epa.gov/ncea/iris/iris_documents/documents/toxreviews/0088tr.pdf.
  18. Vernet C., Philippat C., Calafat A.M., Ye X., Lyon-Caen S., Siroux V., Schisterman E.F., Slama R. Within-Day, Between-Day, and Between-Week variability of urinary concentrations of phenol biomarkers in pregnant women. Environ. Health Perspest., 2018, Vol. 126, no. 3, 037005. doi: 10.1289/EHP1994.

Supplementary files

There are no supplementary files to display.


Copyright (c) 2021 Kazakova O.A., Dolgikh O.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Свидетельство о регистрации СМИ ПИ № 77 - 11525 от 04.01.2002 выдано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies