IMMUNE RESPONSES TO HERPESVIRUSES AND MULTIPLE SCLEROSIS



Cite item

Full Text

Abstract

The review presents publications mainly for the last 5–7 years, devoted to the further study of the role of herpesviruses in the pathogenesis of multiple sclerosis. Information on the features of the immune response to the Epstein-Barr virus and human herpes virus type 6 with multiple sclerosis is discussed. Hypotheses concerning the involvement of these herpesviruses in immunopathological processes in multiple sclerosis are described.

About the authors

G. F. Zheleznikova

Research Institute of Children Infections of the Federal Medico-Biological Agency of Russia

Author for correspondence.
Email: zheleznikova.galina@gmail.com

MD, PhD, Professor, Senior Research Associate of the Department of Clinical Laboratory Diagnostic,

 

Russian Federation

N. V. Skripchenko

Research Institute of Children Infections of the Federal Medico-Biological Agency of Russia

Email: fake@neicon.ru

Doctor of Medical Science, Professor, Vice-Director for Scientific Work,

 

Russian Federation

L. A. Alekseeva

Research Institute of Children Infections of the Federal Medico-Biological Agency of Russia

Email: fake@neicon.ru

PhD, MD (Biology), Leading Research Associate of the Department of Clinical Laboratory Diagnostic,

 

Russian Federation

E. Y. Skripchenko

Research Institute of Children Infections of the Federal Medico-Biological Agency of Russia;
Federal State Budgetary Institution “Institute of Human Brain named after N. P. Bekhtereva, Russian Academy of Sciences”

Email: fake@neicon.ru

PhD, Senior Research Associate of the Department of Neuroinfections and Organic Pathology of Nervous System;

Head of Children’s Neurologic Department,

Saint Petersburg

Russian Federation

References

  1. Бойко А. Н., Гусев Е. И. Достижения в изучении проблем рассеянного склероза (обзор). Доктор. Ру 2012, 5(73), 9–15.
  2. Железникова Г. Ф., Скрипченко Н. В., Иванова Г. П., Суровцева А. В., Скрипченко Е. Ю. Герпесвирусы и рассеянный склероз. Журнал неврологии и психиатрии им. С. С. Корсакова 2016, 9, 133–143. DOI: 10.17116/ jnevro201611691133-143
  3. Sundqvist E., Sundström P., Lindén M., Hedström A., Aloisi F., Hillert J., Kockum I., Alfredsson L., Olsson T. Epstein-Barr virus and multiple sclerosis: interaction with HLA. Genes Immun. 2012, 13(1), 14–20. doi: 10.1038/gene.2011.42.
  4. Owens G., Bennett J. Trigger, pathogen, or bystander: the complex nexus linking Epstein-Barr virus and multiple sclerosis. Mult Scler. 2012, 18(9), 1204–1208. doi: 10.1177/1352458512448109
  5. Mechelli R., Manzari C., Policano C., Annese A., Picardi E., Umeton R., Fornasiero A., D’Erchia A., Buscarinu M., Agliardi C., Annibali V., Serafi ni B., Rosicarelli B., Romano S., Angelini D., Ricigliano V., Buttari F., Battistini L., Centonze D., Guerini F., D’Alfonso S., Pesole G., Salvetti M., Ristori G. Epstein-Barr virus genetic variants are associated with multiple sclerosis. Neurology. 2015, 84(13), 1362–1368. doi: 10.1212/WNL.0000000000001420.
  6. Jha H., Mehta D., Lu J., El-Naccache D., Shukla S., Kovacsics C., Kolson D., Robertson E. Gammaherpes virus infection of human neuronal cells. Mbio. 2015, 6(6), e01844–15. doi: 10.1128/mBio.01844-15
  7. Márquez A., Horwitz M. The role of latently infected B cells in CNS Autoimmunity. Front Immunol. 2015, 6, 544. doi: 10.3389/fimmu.2015.00544
  8. Kang M., Kieff E. Epstein-Barr virus latent genes. Exp Mol Med. 2015;47: e131. doi: 10.1038/emm.2014.84
  9. Albanese M., Tagawa T., Bouvet M., Maliqi L., Lutter D., Hoser J., Hastreiter M., Hayes M., Sugden B., Martin L., Moosmann A., Hammerschmidt W. EpsteinBarr virus microRNAs reduce immune surveillance by virus-specific CD8+ T cells. Proc Natl Acad Sci U S A. 2016, 113(42), E6467-E6475. doi: 10.1073/pnas.1605884113
  10. Xiao D., Ye X., Zhang N., Ou M., Guo C., Zhang B., Liu Y., Wang M., Yang G., Jing C. A meta-analysis of interaction between Epstein-Barr virus and HLADRB1*1501 on risk of multiple sclerosis. Sci Rep. 2015, 5, 18083. doi: 10.1038/srep18083
  11. Hammer C., Begemann M., McLaren P., Bartha I., Michel A., Klose B., Schmitt C., Waterboer T., Pawlita M., Schulz T., Ehrenreich H., Fellay J. Amino acid variation in HLA class II proteins is a major determinant of humoral response to common viruses. Am J Hum Genet. 2015, 97(5), 738–743. doi: 10.1016/j.ajhg.2015.09.008
  12. Wergeland S., Myhr K., Løken-Amsrud K., Beiske A., Bjerve K., Hovdal H., Midgard R., Kvistad S., Holmøy T., Riise T., Torkildsen Ø. Vitamin D, HLA-DRB1 and Epstein-Barr virus antibody levels in a prospective cohort of multiple sclerosis patients. Eur J Neurol. 2016, 23(6), 1064–1070. doi: 10.1111/ene.12986
  13. Tschochner M., Leary S., Cooper D., Strautins K., Chopra A., Clark H., Choo L., Dunn D., James I., Carroll W., Kermode A., Nolan D. Identifying patientspecifi c Epstein-Barr nuclear antigen-1 genetic variation and potential autoreactive targets relevant to multiple sclerosis pathogenesis. PLoS One. 2016, 11(2), e0147567. doi: 10.1371/journal.pone.0147567
  14. Lindsey J., deGannes S., Pate K., Zhao X. Antibodies specifi c for Epstein-Barr virus nuclear antigen-1 cross-react with human heterogeneous nuclear ribonucleoprotein L. Mol Immunol. 2016, 69, 7–12. doi: 10.1016/j.molimm.2015.11.007
  15. Houldcroft C., Kellam P. Host genetics of Epstein-Barr virus infection, latency and disease. Rev Med Virol. 2015, 25(2), 71–84. doi: 10.1002/rmv.1816
  16. Zhou Y., Zhu G., Charlesworth J., Simpson S., Rubicz R., Göring H., Patsopoulos N., Laverty C., Wu F., Henders A., Ellis J., van der Mei I., Montgomery G., Blangero J., Curran J., Johnson M., Martin N., Nyholt D., Taylor B. Genetic loci for Epstein-Barr virus nuclear antigen-1 are associated with risk of multiple sclerosis. Mult Scler. 2016, 22(13), 1655–1664. doi: 10.1177/1352458515626598
  17. Gieß R., Pfuhl C., Behrens J., Rasche L., Freitag E., Khalighy N., Otto C., Wuerfel J., Brandt A., Hofmann J., Eberspächer B., Bellmann-Strobl J., Paul F., Ruprecht K. Epstein-Barr virus antibodies in serum and DNA load in saliva are not associated with radiological or clinical disease activity in patients with early multiple sclerosis. PLoS One. 2017, 12(4). e0175279. doi: 10.1371/journal.pone.0175279
  18. Jilek S., Schluep M., Harari A., Canales M., Lysandropoulos A., Zekeridou A., Pantaleo G., Du Pasquier R. HLA-B7-restricted EBV-specifi c CD8+ T cells are dysregulated in multiple sclerosis. J Immunol. 2012, 188(9), 4671–4680. doi: 10.4049/jimmunol.1103100
  19. van Nierop G., Mautner J., Mitterreiter J., Hintzen R., Verjans G. Intrathecal CD8 T-cells of multiple sclerosis patients recognize lytic Epstein-Barr virus proteins. Mult Scler. 2016, 22(3), 279–291. doi: 10.1177/1352458515588581
  20. Lossius A., Johansen J., Vartdal F., Robins H., Jūratė Šaltytė B., Holmøy T., Olweus J. High-throughput sequencing of TCR repertoires in multiple sclerosis reveals intrathecal enrichment of EBV-reactive CD8+ T cells. Eur J Immunol. 2014, 44(11), 3439–3452. doi: 10.1002/eji.201444662
  21. Latham L., Lee M., Lincoln J., Ji N., Forsthuber T., Lindsey J. Antivirus immune activity in multiple sclerosis correlates with MRI activity. Acta Neurol Scand. 2016, 133(1), 17–24. doi: 10.1111/ane.12417
  22. Pender M., Csurhes P., Burrows J., Burrows S. Defective T-cell control of Epstein-Barr virus infection in multiple sclerosis. Clin Transl Immunology. 2017, 6(1), e126. doi: 10.1038/cti.2016.87
  23. Гусев Е. И., Бойко А. Н., Ходова М. А., Смирнова Н. Ф., Сиверцева С. А., Смирнов А. В. Роль инфекционных заболеваний в развитии рассеянного склероза в республике Северная Осетия – Алания. Детские инфекции 2014, 1, 19–25.
  24. Virtanen J., Jacobson S. Viruses and multiple sclerosis. CNS Neurol Disord Drug Targets. 2012, 11(5), 528–544. https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC4758194/
  25. Nielsen T., Rostgaard K., Askling J., Steffensen R., Oturai A., Jersild C., Koch-Henriksen N., Sørensen P., Hjalgrim H. Effects of infectious mononucleosis and HLA-DRB1*15 in multiple sclerosis. Mult Scler. 2009, 15(4), 431–436. doi: 10.1177/1352458508100037.
  26. Ramagopalan S., Meier U., Conacher M., Ebers G., Giovannoni G., Crawford D., Karen A., McAulay K. Role of the HLA system in the association between multiple sclerosis and infectious mononucleosis. Arch Neurol. 2011, 68(4), 469–472. doi: 10.1001/archneurol.2011.48
  27. Disanto G., Hall C., Lucas R., Ponsonby A., Berlanga-Taylor A., Giovannoni G., Ramagopalan S. Assessing interactions between HLA-DRB1*15 and infectious mononucleosis on the risk of multiple sclerosis. Mult Scler. 2013, 19(10), 1355–1358. doi: 10.1177/1352458513477231
  28. Ramakrishnan V., Akram Husain R., Ahmed S. Genetic predisposition of IL-10 promoter polymorphisms with risk of multiple sclerosis: A meta-analysis. J Neuroimmunol. 2017, 306, 11–18. doi: 10.1016/j.jneuroim.2017.02.015
  29. Huang J., Xie Z., Lu R., Xie Z. Association of interleukin-1 gene polymorphisms with multiple sclerosis: a meta-analysis. Infl amm Res. 2013, 62(1), 97–106. doi: 10.1007/s00011-012-0556-1
  30. Izad M., Vodjgani M., Niknam M., Amirzargar A., Shahbeigi S., Heidari A., Keramatipour M. Cytokines genes polymorphisms and risk of multiple sclerosis. Am J Med Sci. 2010, 339(4), 327–331. doi: 10.1097/MAJ.0b013e3181cef1a1
  31. Akay E., Patel M., Conibear T., Chaggar T., Haque T. Interleukin 28B gene polymorphisms and Epstein-Barr virus-associated lymphoproliferative diseases. Intervirology. 2014, 57(2), 112–115. doi: 10.1159/000357326
  32. Malhotra S., Morcillo-Suárez C., Brassat D., Goertsches R., Lechner-Scott J., Urcelay E., Fernández O., Drulovic J., García-Merino A., Martinelli Boneschi F., Chan A., Vandenbroeck K., Navarro A., Bustamante M., Río J., Akkad D., Giacalone G., Sánchez A., Leyva L., Alvarez-Lafuente R., Zettl U., Oksenberg J., Montalban X., Comabella M. IL28B polymorphisms are not associated with the response to interferon-β in multiple sclerosis. J Neuroimmunol. 2011, 239(1–2), 101–104. doi: 10.1016/j.jneuroim.2011.08.004
  33. de Lapuente L., Alloza I., Goertsches R., Zettl U., Urcelay E., Arroyo R., Comabella M., Montalban X., Antigüedad A., Vandenbroeck K. Analysis of the IL28RA locus as genetic risk factor for multiple sclerosis. J Neuroimmunol. 2012, 245(1–2), 98–101. doi: 10.1016/j.jneuroim.2012.02.005
  34. Chijioke O., Azzi T., Nadal D., Münz C. Innate immune responses against Epstein Barr virus infection. J Leukoc Biol. 2013, 94(6), 1185–1190. doi: 10.1189/jlb.0313173
  35. Azzi T., Lünemann A., Murer A., Ueda S., Béziat V., Malmberg K., Staubli G., Gysin C., Berger C., Münz C., Chij ioke O., Nadal D. Role for early-differentiated natural killer cells in infectious mononucleosis. Blood. 2014, 124(16), 2533–2543. doi: 10.1182/blood-2014-01-553024
  36. Münz С. Epstein–Barr virus-specific immune control by innate lymphocytes. Front Immunol. 2017, 8, 1658. doi: 10.3389/fimmu.2017.01658
  37. Djaoud Z., Guethlein L., Horowitz A., Azzi T., NematGorgani N., Olive D., Nadal D., Norman P., Münz C., Parham P. Two alternate strategies for innate immunity to Epstein-Barr virus: One using NK cells and the other NK cells and γδ T cells. J Exp Med. 2017, 214(6), 1827–1841. doi: 10.1084/jem.20161017
  38. Jayasooriya S., de Silva T., Njie-jobe J., Sanyang C., Leese A., Bell A., McAulay K., Yanchun P., Long H., Dong T., Whittle H., Rickinson A., Rowland-Jones S., Hislop A., Flanagan K. Early virological and immunological events in asymptomatic Epstein-Barr virus infection in African children. PLoS Pathog. 2015, 11(3), e1004746. doi: 10.1371/journal.ppat.1004746
  39. Abbott R., Pachnio A., Pedroza-Pacheco I., Leese A., Begum J., Long H., Croom-Carter D., Stacey A., Moss P., Hislop A., Borrow P., Rickinson A., Bell A. Asymptomatic primary infection with Epstein-Barr virus: observations on young adult cases. J Virol. 2017, 91(21), pii: e00382–17. doi: 10.1128/JVI.00382–17
  40. Otto C., Hofmann J., Ruprecht K. Antibody producing B lineage cells invade the central nervous system predominantly at the time of and triggered by acute Epstein-Barr virus infection: A hypothesis on the origin of intrathecal immunoglobulin synthesis in multiple sclerosis. Med Hypotheses. 2016, 91, 109–113. doi: 10.1016/j.mehy.2016.04.025
  41. Pfuhl C., Oechtering J., Rasche L., Gieß R., Behrens J., Wakonig K., Freitag E., Pache F., Otto C., Hofmann J., Eberspächer B., Bellmann-Strobl J., Paul F., Ruprecht K. Association of serum Epstein-Barr nuclear antigen-1 antibodies and intrathecal immunoglobulin synthesis in early multiple sclerosis. J Neuroimmunol. 2015, 285, 156–160. doi: 10.1016/j.jneuroim.2015.06.012
  42. Ruprecht K., Wildemann B., Jarius S. Low intrathecal antibody production despite high seroprevalence of Epstein-Barr virus in multiple sclerosis: a review of the literature. J Neurol. 2018, 265(2), 239–252. doi: 10.1007/s00415-017-8656-z
  43. Kakalacheva K., Regenass S., Wiesmayr S., Azzi T., Berger C., Dale R., Brilot F., Münz C., Rostasy K., Nadal D., Lünemann J. Infectious mononucleosis triggers generation of IgG auto-antibodies against native myelin oligodendrocyte glycoprotein. Viruses. 2016, 8(2), pii: E51. doi: 10.3390/v8020051
  44. Pantry S., Medveczky P. Latency, integration, and reactivation of human herpesvirus-6. Viruses. 2017, 9(7), pii: E194. doi: 10.3390/v9070194
  45. Nordström I., Rudin A., Adlerberth I., Wold A., Saalman R., Hesselmar B., Aberg N., Liljeqvist J., Eriksson K. Infection of infants with human herpesvirus type 6 may be associated with reduced allergic sensitization and T-helper type 2 development. Clin Exp Allergy. 2010, 40(6), 882–890. doi: 10.1111/j.1365-2222.2010.03491.x
  46. Dagna L., Pritchett J., Lusso P. Immunomodulation and immunosuppression by human herpesvirus 6A and 6B. Future Virol. 2013, 8(3), 273–287. doi: 10.2217/fvl.13.7
  47. Alenda R., Alvarez-Lafuente R., Costa-Frossard L., Arroyo R., Mirete S., Alvarez-Cermeno J., Villar L. Identifi cation of the major HHV-6 antigen recognized by cerebrospinal fluid IgG in multiple sclerosis. Eur J Neurol. 2014, 8, 1096–1101. doi: 10.1111/ene.12435
  48. Pormohammad A., Azimi T., Falah F., Faghihloo E. Relationship of human herpes virus 6 and multiple sclerosis: A systematic review and meta-analysis. J Cell Physiol. 2018, 233(4), 2850–2862. doi: 10.1002/jcp.26000
  49. Ortega-Madueño I., Garcia-Montojo M., DominguezMozo M., Garcia-Martinez A., Arias-Leal A., Casanova I., Arroyo R., Alvarez-Lafuente R. Anti-human herpesvirus 6A/B IgG correlates with relapses and progression in multiple sclerosis. PLoS One. 2014, 9(8), e104836. doi: 10.1371/journal.pone.0104836
  50. Wang F., Chi J., Peng G., Zhou F., Wang J., Li L., Feng D., Xie F., Gu B., Qin J., Chen Y., Yao K. Development of virus-specific CD4+ and CD8+ regulatory T cells induced by human herpesvirus 6 infection. J Virol. 2014, 88(2), 1011–1024. doi: 10.1128/JVI.02586-13
  51. Tejada-Simon M., Zang Y., Hong J., Rivera V., Killian J., Zhang J. Detection of viral DNA and immune responses to the human herpesvirus 6 101-kilodalton virion protein in patients with multiple sclerosis and in controls. J Virol. 2002,76(12), 6147–6154.
  52. Yao K., Graham J., Akahata Y., Oh U., Jacobson S. Mechanism of neuroinfl ammation: enhanced cytotoxicity and IL-17 production via CD46 binding. J Neuroimmune Pharmacol. 2010, 5(3), 469–478. doi: 10.1007/s11481-010-9232-9
  53. Железникова Г. Ф., Скрипченко Н. В., Алексеева Л. А., Скрипченко Е. Ю. Цитокины в патогенезе рассеянного склероза. 1. Цитокины врожденного иммунитета. Цитокины и воспаление. 2016, 15(2), 121–132.
  54. Engdahl E., Gustafsson R., Ramanujam R., Sundqvist E., Olsson T., Hillert J., Alfredsson L., Kockum I., FogdellHahn A. HLA-A*02, gender and tobacco smoking, but not multiple sclerosis, affects the IgG antibody response against human herpesvirus 6. Hum Immunol. 2014, 75(6), 524–530. doi: 10.1016/j.humimm.2014.03.001
  55. Vandenbroeck K., Alloza I., Swaminathan B., Antigüedad A., Otaegui D., Olascoaga J., Barcina M., de las Heras V., Bartolomé M., Fernández-Arquero M., Arroyo R., Alvarez-Lafuente R., Cénit M., Urcelay E. Validation of IRF5 as multiple sclerosis risk gene: putative role in interferon beta therapy and human herpes virus-6 infection. Genes Immun. 2011, 12(1), 40–45. doi: 10.1038/gene.2010.46
  56. Shao Q., Lin Z., Wu X., Tang J., Lu S., Feng D., Cheng C., Qing L., Yao K., Chen Y. Transcriptome sequencing of neurologic diseases associated genes in HHV-6A infected human astrocyte. Oncotarget. 2016, 7(30), 48070–48080. doi: 10.18632/oncotarget.10127
  57. Tao C., Simpson S., Taylor B., van der Mei I. Association between human herpesvirus and human endogenous retrovirus and MS onset and progression. J Neurol Sci. 2017, 372, 239–249. doi: 10.1016/j.jns.2016.11.060.
  58. Mentis A., Dardiotis E., Grigoriadis N., Petinaki E., Hadjigeorgiou G. Viruses and endogenous retroviruses in multiple sclerosis: From correlation to causation. Acta Neurol Scand. 2017, 136(6), 606–616. doi: 10.1111/ane.12775
  59. Krone B., Grange J. Multiple sclerosis: are protective immune mechanisms compromised by a complex infectious background? Autoimmune Dis. 2011, 2011, 708–750. doi: 10.4061/2011/708750 60. Fierz W. Multiple sclerosis: an example of pathogenic viral interaction? Virol J. 2017, 14(1), 42. doi: 10.1186/s12985-017-0719-3
  60. Höllsberg P., Kusk M., Bech E., Hansen H., Jakobsen J., Haahr S. Presence of Epstein-Barr virus and human herpesvirus 6B DNA in multiple sclerosis patients: associations with disease activity. Acta Neurologica Scandinavica. 2005, 112(6), 395–402. doi: 10.1111/j.1600-0404.2005.00516.x
  61. Virtanen J., Wohler J., Fenton K., Reich D., Jacobson S. Oligoclonal bands in multiple sclerosis reactive against two herpesviruses and association with magnetic resonance imaging findings. Mult Scler. 2014, 20(1), 27– 34. doi: 10.1177/1352458513490545
  62. Железникова Г. Ф., Скрипченко Н. В., Иванова Г. П., Суровцева А. В., Монахова Н. Е. Цитокины и герпесвирусы при рассеянном склерозе у детей. Инфекция и иммунитет 2015, 5(4), 349–358. DOI: http://dx.doi.org/10.15789/2220-7619-2015-4-349-358

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Zheleznikova G.F., Skripchenko N.V., Alekseeva L.A., Skripchenko E.Y.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № 77 - 11525 от 04.01.2002.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies