IMMUNE RESPONSES TO HERPESVIRUSES AND MULTIPLE SCLEROSIS
- Authors: Zheleznikova G.F.1, Skripchenko N.V.1, Alekseeva L.A.1, Skripchenko E.Y.1,2
-
Affiliations:
- Research Institute of Children Infections of the Federal Medico-Biological Agency of Russia
- Federal State Budgetary Institution “Institute of Human Brain named after N. P. Bekhtereva, Russian Academy of Sciences”
- Issue: Vol 22, No 4 (2019)
- Pages: 1331-1346
- Section: REVIEWS
- Submitted: 13.09.2020
- Accepted: 13.09.2020
- Published: 20.12.2019
- URL: https://rusimmun.ru/jour/article/view/526
- DOI: https://doi.org/10.31857/S102872210007036-4
- ID: 526
Cite item
Full Text
Abstract
About the authors
G. F. Zheleznikova
Research Institute of Children Infections of the Federal Medico-Biological Agency of Russia
Author for correspondence.
Email: zheleznikova.galina@gmail.com
MD, PhD, Professor, Senior Research Associate of the Department of Clinical Laboratory Diagnostic,
Russian Federation
N. V. Skripchenko
Research Institute of Children Infections of the Federal Medico-Biological Agency of Russia
Email: fake@neicon.ru
Doctor of Medical Science, Professor, Vice-Director for Scientific Work,
Russian Federation
L. A. Alekseeva
Research Institute of Children Infections of the Federal Medico-Biological Agency of Russia
Email: fake@neicon.ru
PhD, MD (Biology), Leading Research Associate of the Department of Clinical Laboratory Diagnostic,
Russian Federation
E. Y. Skripchenko
Research Institute of Children Infections of the Federal Medico-Biological Agency of Russia;Federal State Budgetary Institution “Institute of Human Brain named after N. P. Bekhtereva, Russian Academy of Sciences”
Email: fake@neicon.ru
PhD, Senior Research Associate of the Department of Neuroinfections and Organic Pathology of Nervous System;
Head of Children’s Neurologic Department,
Saint Petersburg
Russian FederationReferences
- Бойко А. Н., Гусев Е. И. Достижения в изучении проблем рассеянного склероза (обзор). Доктор. Ру 2012, 5(73), 9–15.
- Железникова Г. Ф., Скрипченко Н. В., Иванова Г. П., Суровцева А. В., Скрипченко Е. Ю. Герпесвирусы и рассеянный склероз. Журнал неврологии и психиатрии им. С. С. Корсакова 2016, 9, 133–143. DOI: 10.17116/ jnevro201611691133-143
- Sundqvist E., Sundström P., Lindén M., Hedström A., Aloisi F., Hillert J., Kockum I., Alfredsson L., Olsson T. Epstein-Barr virus and multiple sclerosis: interaction with HLA. Genes Immun. 2012, 13(1), 14–20. doi: 10.1038/gene.2011.42.
- Owens G., Bennett J. Trigger, pathogen, or bystander: the complex nexus linking Epstein-Barr virus and multiple sclerosis. Mult Scler. 2012, 18(9), 1204–1208. doi: 10.1177/1352458512448109
- Mechelli R., Manzari C., Policano C., Annese A., Picardi E., Umeton R., Fornasiero A., D’Erchia A., Buscarinu M., Agliardi C., Annibali V., Serafi ni B., Rosicarelli B., Romano S., Angelini D., Ricigliano V., Buttari F., Battistini L., Centonze D., Guerini F., D’Alfonso S., Pesole G., Salvetti M., Ristori G. Epstein-Barr virus genetic variants are associated with multiple sclerosis. Neurology. 2015, 84(13), 1362–1368. doi: 10.1212/WNL.0000000000001420.
- Jha H., Mehta D., Lu J., El-Naccache D., Shukla S., Kovacsics C., Kolson D., Robertson E. Gammaherpes virus infection of human neuronal cells. Mbio. 2015, 6(6), e01844–15. doi: 10.1128/mBio.01844-15
- Márquez A., Horwitz M. The role of latently infected B cells in CNS Autoimmunity. Front Immunol. 2015, 6, 544. doi: 10.3389/fimmu.2015.00544
- Kang M., Kieff E. Epstein-Barr virus latent genes. Exp Mol Med. 2015;47: e131. doi: 10.1038/emm.2014.84
- Albanese M., Tagawa T., Bouvet M., Maliqi L., Lutter D., Hoser J., Hastreiter M., Hayes M., Sugden B., Martin L., Moosmann A., Hammerschmidt W. EpsteinBarr virus microRNAs reduce immune surveillance by virus-specific CD8+ T cells. Proc Natl Acad Sci U S A. 2016, 113(42), E6467-E6475. doi: 10.1073/pnas.1605884113
- Xiao D., Ye X., Zhang N., Ou M., Guo C., Zhang B., Liu Y., Wang M., Yang G., Jing C. A meta-analysis of interaction between Epstein-Barr virus and HLADRB1*1501 on risk of multiple sclerosis. Sci Rep. 2015, 5, 18083. doi: 10.1038/srep18083
- Hammer C., Begemann M., McLaren P., Bartha I., Michel A., Klose B., Schmitt C., Waterboer T., Pawlita M., Schulz T., Ehrenreich H., Fellay J. Amino acid variation in HLA class II proteins is a major determinant of humoral response to common viruses. Am J Hum Genet. 2015, 97(5), 738–743. doi: 10.1016/j.ajhg.2015.09.008
- Wergeland S., Myhr K., Løken-Amsrud K., Beiske A., Bjerve K., Hovdal H., Midgard R., Kvistad S., Holmøy T., Riise T., Torkildsen Ø. Vitamin D, HLA-DRB1 and Epstein-Barr virus antibody levels in a prospective cohort of multiple sclerosis patients. Eur J Neurol. 2016, 23(6), 1064–1070. doi: 10.1111/ene.12986
- Tschochner M., Leary S., Cooper D., Strautins K., Chopra A., Clark H., Choo L., Dunn D., James I., Carroll W., Kermode A., Nolan D. Identifying patientspecifi c Epstein-Barr nuclear antigen-1 genetic variation and potential autoreactive targets relevant to multiple sclerosis pathogenesis. PLoS One. 2016, 11(2), e0147567. doi: 10.1371/journal.pone.0147567
- Lindsey J., deGannes S., Pate K., Zhao X. Antibodies specifi c for Epstein-Barr virus nuclear antigen-1 cross-react with human heterogeneous nuclear ribonucleoprotein L. Mol Immunol. 2016, 69, 7–12. doi: 10.1016/j.molimm.2015.11.007
- Houldcroft C., Kellam P. Host genetics of Epstein-Barr virus infection, latency and disease. Rev Med Virol. 2015, 25(2), 71–84. doi: 10.1002/rmv.1816
- Zhou Y., Zhu G., Charlesworth J., Simpson S., Rubicz R., Göring H., Patsopoulos N., Laverty C., Wu F., Henders A., Ellis J., van der Mei I., Montgomery G., Blangero J., Curran J., Johnson M., Martin N., Nyholt D., Taylor B. Genetic loci for Epstein-Barr virus nuclear antigen-1 are associated with risk of multiple sclerosis. Mult Scler. 2016, 22(13), 1655–1664. doi: 10.1177/1352458515626598
- Gieß R., Pfuhl C., Behrens J., Rasche L., Freitag E., Khalighy N., Otto C., Wuerfel J., Brandt A., Hofmann J., Eberspächer B., Bellmann-Strobl J., Paul F., Ruprecht K. Epstein-Barr virus antibodies in serum and DNA load in saliva are not associated with radiological or clinical disease activity in patients with early multiple sclerosis. PLoS One. 2017, 12(4). e0175279. doi: 10.1371/journal.pone.0175279
- Jilek S., Schluep M., Harari A., Canales M., Lysandropoulos A., Zekeridou A., Pantaleo G., Du Pasquier R. HLA-B7-restricted EBV-specifi c CD8+ T cells are dysregulated in multiple sclerosis. J Immunol. 2012, 188(9), 4671–4680. doi: 10.4049/jimmunol.1103100
- van Nierop G., Mautner J., Mitterreiter J., Hintzen R., Verjans G. Intrathecal CD8 T-cells of multiple sclerosis patients recognize lytic Epstein-Barr virus proteins. Mult Scler. 2016, 22(3), 279–291. doi: 10.1177/1352458515588581
- Lossius A., Johansen J., Vartdal F., Robins H., Jūratė Šaltytė B., Holmøy T., Olweus J. High-throughput sequencing of TCR repertoires in multiple sclerosis reveals intrathecal enrichment of EBV-reactive CD8+ T cells. Eur J Immunol. 2014, 44(11), 3439–3452. doi: 10.1002/eji.201444662
- Latham L., Lee M., Lincoln J., Ji N., Forsthuber T., Lindsey J. Antivirus immune activity in multiple sclerosis correlates with MRI activity. Acta Neurol Scand. 2016, 133(1), 17–24. doi: 10.1111/ane.12417
- Pender M., Csurhes P., Burrows J., Burrows S. Defective T-cell control of Epstein-Barr virus infection in multiple sclerosis. Clin Transl Immunology. 2017, 6(1), e126. doi: 10.1038/cti.2016.87
- Гусев Е. И., Бойко А. Н., Ходова М. А., Смирнова Н. Ф., Сиверцева С. А., Смирнов А. В. Роль инфекционных заболеваний в развитии рассеянного склероза в республике Северная Осетия – Алания. Детские инфекции 2014, 1, 19–25.
- Virtanen J., Jacobson S. Viruses and multiple sclerosis. CNS Neurol Disord Drug Targets. 2012, 11(5), 528–544. https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC4758194/
- Nielsen T., Rostgaard K., Askling J., Steffensen R., Oturai A., Jersild C., Koch-Henriksen N., Sørensen P., Hjalgrim H. Effects of infectious mononucleosis and HLA-DRB1*15 in multiple sclerosis. Mult Scler. 2009, 15(4), 431–436. doi: 10.1177/1352458508100037.
- Ramagopalan S., Meier U., Conacher M., Ebers G., Giovannoni G., Crawford D., Karen A., McAulay K. Role of the HLA system in the association between multiple sclerosis and infectious mononucleosis. Arch Neurol. 2011, 68(4), 469–472. doi: 10.1001/archneurol.2011.48
- Disanto G., Hall C., Lucas R., Ponsonby A., Berlanga-Taylor A., Giovannoni G., Ramagopalan S. Assessing interactions between HLA-DRB1*15 and infectious mononucleosis on the risk of multiple sclerosis. Mult Scler. 2013, 19(10), 1355–1358. doi: 10.1177/1352458513477231
- Ramakrishnan V., Akram Husain R., Ahmed S. Genetic predisposition of IL-10 promoter polymorphisms with risk of multiple sclerosis: A meta-analysis. J Neuroimmunol. 2017, 306, 11–18. doi: 10.1016/j.jneuroim.2017.02.015
- Huang J., Xie Z., Lu R., Xie Z. Association of interleukin-1 gene polymorphisms with multiple sclerosis: a meta-analysis. Infl amm Res. 2013, 62(1), 97–106. doi: 10.1007/s00011-012-0556-1
- Izad M., Vodjgani M., Niknam M., Amirzargar A., Shahbeigi S., Heidari A., Keramatipour M. Cytokines genes polymorphisms and risk of multiple sclerosis. Am J Med Sci. 2010, 339(4), 327–331. doi: 10.1097/MAJ.0b013e3181cef1a1
- Akay E., Patel M., Conibear T., Chaggar T., Haque T. Interleukin 28B gene polymorphisms and Epstein-Barr virus-associated lymphoproliferative diseases. Intervirology. 2014, 57(2), 112–115. doi: 10.1159/000357326
- Malhotra S., Morcillo-Suárez C., Brassat D., Goertsches R., Lechner-Scott J., Urcelay E., Fernández O., Drulovic J., García-Merino A., Martinelli Boneschi F., Chan A., Vandenbroeck K., Navarro A., Bustamante M., Río J., Akkad D., Giacalone G., Sánchez A., Leyva L., Alvarez-Lafuente R., Zettl U., Oksenberg J., Montalban X., Comabella M. IL28B polymorphisms are not associated with the response to interferon-β in multiple sclerosis. J Neuroimmunol. 2011, 239(1–2), 101–104. doi: 10.1016/j.jneuroim.2011.08.004
- de Lapuente L., Alloza I., Goertsches R., Zettl U., Urcelay E., Arroyo R., Comabella M., Montalban X., Antigüedad A., Vandenbroeck K. Analysis of the IL28RA locus as genetic risk factor for multiple sclerosis. J Neuroimmunol. 2012, 245(1–2), 98–101. doi: 10.1016/j.jneuroim.2012.02.005
- Chijioke O., Azzi T., Nadal D., Münz C. Innate immune responses against Epstein Barr virus infection. J Leukoc Biol. 2013, 94(6), 1185–1190. doi: 10.1189/jlb.0313173
- Azzi T., Lünemann A., Murer A., Ueda S., Béziat V., Malmberg K., Staubli G., Gysin C., Berger C., Münz C., Chij ioke O., Nadal D. Role for early-differentiated natural killer cells in infectious mononucleosis. Blood. 2014, 124(16), 2533–2543. doi: 10.1182/blood-2014-01-553024
- Münz С. Epstein–Barr virus-specific immune control by innate lymphocytes. Front Immunol. 2017, 8, 1658. doi: 10.3389/fimmu.2017.01658
- Djaoud Z., Guethlein L., Horowitz A., Azzi T., NematGorgani N., Olive D., Nadal D., Norman P., Münz C., Parham P. Two alternate strategies for innate immunity to Epstein-Barr virus: One using NK cells and the other NK cells and γδ T cells. J Exp Med. 2017, 214(6), 1827–1841. doi: 10.1084/jem.20161017
- Jayasooriya S., de Silva T., Njie-jobe J., Sanyang C., Leese A., Bell A., McAulay K., Yanchun P., Long H., Dong T., Whittle H., Rickinson A., Rowland-Jones S., Hislop A., Flanagan K. Early virological and immunological events in asymptomatic Epstein-Barr virus infection in African children. PLoS Pathog. 2015, 11(3), e1004746. doi: 10.1371/journal.ppat.1004746
- Abbott R., Pachnio A., Pedroza-Pacheco I., Leese A., Begum J., Long H., Croom-Carter D., Stacey A., Moss P., Hislop A., Borrow P., Rickinson A., Bell A. Asymptomatic primary infection with Epstein-Barr virus: observations on young adult cases. J Virol. 2017, 91(21), pii: e00382–17. doi: 10.1128/JVI.00382–17
- Otto C., Hofmann J., Ruprecht K. Antibody producing B lineage cells invade the central nervous system predominantly at the time of and triggered by acute Epstein-Barr virus infection: A hypothesis on the origin of intrathecal immunoglobulin synthesis in multiple sclerosis. Med Hypotheses. 2016, 91, 109–113. doi: 10.1016/j.mehy.2016.04.025
- Pfuhl C., Oechtering J., Rasche L., Gieß R., Behrens J., Wakonig K., Freitag E., Pache F., Otto C., Hofmann J., Eberspächer B., Bellmann-Strobl J., Paul F., Ruprecht K. Association of serum Epstein-Barr nuclear antigen-1 antibodies and intrathecal immunoglobulin synthesis in early multiple sclerosis. J Neuroimmunol. 2015, 285, 156–160. doi: 10.1016/j.jneuroim.2015.06.012
- Ruprecht K., Wildemann B., Jarius S. Low intrathecal antibody production despite high seroprevalence of Epstein-Barr virus in multiple sclerosis: a review of the literature. J Neurol. 2018, 265(2), 239–252. doi: 10.1007/s00415-017-8656-z
- Kakalacheva K., Regenass S., Wiesmayr S., Azzi T., Berger C., Dale R., Brilot F., Münz C., Rostasy K., Nadal D., Lünemann J. Infectious mononucleosis triggers generation of IgG auto-antibodies against native myelin oligodendrocyte glycoprotein. Viruses. 2016, 8(2), pii: E51. doi: 10.3390/v8020051
- Pantry S., Medveczky P. Latency, integration, and reactivation of human herpesvirus-6. Viruses. 2017, 9(7), pii: E194. doi: 10.3390/v9070194
- Nordström I., Rudin A., Adlerberth I., Wold A., Saalman R., Hesselmar B., Aberg N., Liljeqvist J., Eriksson K. Infection of infants with human herpesvirus type 6 may be associated with reduced allergic sensitization and T-helper type 2 development. Clin Exp Allergy. 2010, 40(6), 882–890. doi: 10.1111/j.1365-2222.2010.03491.x
- Dagna L., Pritchett J., Lusso P. Immunomodulation and immunosuppression by human herpesvirus 6A and 6B. Future Virol. 2013, 8(3), 273–287. doi: 10.2217/fvl.13.7
- Alenda R., Alvarez-Lafuente R., Costa-Frossard L., Arroyo R., Mirete S., Alvarez-Cermeno J., Villar L. Identifi cation of the major HHV-6 antigen recognized by cerebrospinal fluid IgG in multiple sclerosis. Eur J Neurol. 2014, 8, 1096–1101. doi: 10.1111/ene.12435
- Pormohammad A., Azimi T., Falah F., Faghihloo E. Relationship of human herpes virus 6 and multiple sclerosis: A systematic review and meta-analysis. J Cell Physiol. 2018, 233(4), 2850–2862. doi: 10.1002/jcp.26000
- Ortega-Madueño I., Garcia-Montojo M., DominguezMozo M., Garcia-Martinez A., Arias-Leal A., Casanova I., Arroyo R., Alvarez-Lafuente R. Anti-human herpesvirus 6A/B IgG correlates with relapses and progression in multiple sclerosis. PLoS One. 2014, 9(8), e104836. doi: 10.1371/journal.pone.0104836
- Wang F., Chi J., Peng G., Zhou F., Wang J., Li L., Feng D., Xie F., Gu B., Qin J., Chen Y., Yao K. Development of virus-specific CD4+ and CD8+ regulatory T cells induced by human herpesvirus 6 infection. J Virol. 2014, 88(2), 1011–1024. doi: 10.1128/JVI.02586-13
- Tejada-Simon M., Zang Y., Hong J., Rivera V., Killian J., Zhang J. Detection of viral DNA and immune responses to the human herpesvirus 6 101-kilodalton virion protein in patients with multiple sclerosis and in controls. J Virol. 2002,76(12), 6147–6154.
- Yao K., Graham J., Akahata Y., Oh U., Jacobson S. Mechanism of neuroinfl ammation: enhanced cytotoxicity and IL-17 production via CD46 binding. J Neuroimmune Pharmacol. 2010, 5(3), 469–478. doi: 10.1007/s11481-010-9232-9
- Железникова Г. Ф., Скрипченко Н. В., Алексеева Л. А., Скрипченко Е. Ю. Цитокины в патогенезе рассеянного склероза. 1. Цитокины врожденного иммунитета. Цитокины и воспаление. 2016, 15(2), 121–132.
- Engdahl E., Gustafsson R., Ramanujam R., Sundqvist E., Olsson T., Hillert J., Alfredsson L., Kockum I., FogdellHahn A. HLA-A*02, gender and tobacco smoking, but not multiple sclerosis, affects the IgG antibody response against human herpesvirus 6. Hum Immunol. 2014, 75(6), 524–530. doi: 10.1016/j.humimm.2014.03.001
- Vandenbroeck K., Alloza I., Swaminathan B., Antigüedad A., Otaegui D., Olascoaga J., Barcina M., de las Heras V., Bartolomé M., Fernández-Arquero M., Arroyo R., Alvarez-Lafuente R., Cénit M., Urcelay E. Validation of IRF5 as multiple sclerosis risk gene: putative role in interferon beta therapy and human herpes virus-6 infection. Genes Immun. 2011, 12(1), 40–45. doi: 10.1038/gene.2010.46
- Shao Q., Lin Z., Wu X., Tang J., Lu S., Feng D., Cheng C., Qing L., Yao K., Chen Y. Transcriptome sequencing of neurologic diseases associated genes in HHV-6A infected human astrocyte. Oncotarget. 2016, 7(30), 48070–48080. doi: 10.18632/oncotarget.10127
- Tao C., Simpson S., Taylor B., van der Mei I. Association between human herpesvirus and human endogenous retrovirus and MS onset and progression. J Neurol Sci. 2017, 372, 239–249. doi: 10.1016/j.jns.2016.11.060.
- Mentis A., Dardiotis E., Grigoriadis N., Petinaki E., Hadjigeorgiou G. Viruses and endogenous retroviruses in multiple sclerosis: From correlation to causation. Acta Neurol Scand. 2017, 136(6), 606–616. doi: 10.1111/ane.12775
- Krone B., Grange J. Multiple sclerosis: are protective immune mechanisms compromised by a complex infectious background? Autoimmune Dis. 2011, 2011, 708–750. doi: 10.4061/2011/708750 60. Fierz W. Multiple sclerosis: an example of pathogenic viral interaction? Virol J. 2017, 14(1), 42. doi: 10.1186/s12985-017-0719-3
- Höllsberg P., Kusk M., Bech E., Hansen H., Jakobsen J., Haahr S. Presence of Epstein-Barr virus and human herpesvirus 6B DNA in multiple sclerosis patients: associations with disease activity. Acta Neurologica Scandinavica. 2005, 112(6), 395–402. doi: 10.1111/j.1600-0404.2005.00516.x
- Virtanen J., Wohler J., Fenton K., Reich D., Jacobson S. Oligoclonal bands in multiple sclerosis reactive against two herpesviruses and association with magnetic resonance imaging findings. Mult Scler. 2014, 20(1), 27– 34. doi: 10.1177/1352458513490545
- Железникова Г. Ф., Скрипченко Н. В., Иванова Г. П., Суровцева А. В., Монахова Н. Е. Цитокины и герпесвирусы при рассеянном склерозе у детей. Инфекция и иммунитет 2015, 5(4), 349–358. DOI: http://dx.doi.org/10.15789/2220-7619-2015-4-349-358