Cite item


The purpose of the research was to study the phenotypic composition of peripheral blood T-lymphocytes in humans in the dynamics of postoperative treatment depending on the outcome of the widespread purulent peritonitis (WPP). 38 patients with acute surgical diseases and abdominal cavity injuries complicated by WPP were examined. Blood sampling was performed before the operation (preoperative period) and also on the 7th, 14th and 21st day of the postoperative period. The study of the phenotype of blood T-lymphocytes was carried out by flow cytometry. It was established that the phenotype of blood T-lymphocytes in patients with WPP in the pre- and post-operative period differs significantly in depending on the outcome of the disease. With a favorable outcome of WPP in the pre-operative period, an increased number of common T-lymphocytes, including expression of CD62L, and CD4+-T cells, primarily due to Treg (including activated cells) are detected. Consequently, an increase in the amount of Treg in patients with WPP at the peak of the disease is a prognostic sign of a favorable outcome. Treg regulate the intensity of the inflammatory process that leads to an improvement in the clinical state of patients with WPP and accordingly increases the likelihood of a favorable outcome of the disease. The phenotype of blood T-lymphocytes significantly changes in the dynamics of post-operative treatment. Regardless of the outcome of the disease, the content of T-cells expressing CD28 and CD62L, as well as the T-helper and Treg level, is significantly reduced in patients. Only with a favorable outcome of the disease at the end of the observed period (21 days of treatment) in the blood increases the amount of cytotoxic T-lymphocytes and T-cells with CD57 expression. These changes in the phenotypic composition of T-lymphocytes are determined by the use of antibiotics and the migration of cells into the inflammation zone. 

About the authors

V. D. Belenjuk

Federal Research Center «Krasnoyarsk Science Center» of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of medical problems of the North

Author for correspondence.

junior researcher, Laboratory of the Cellular Molecular Physiology and Pathology, 


Russian Federation

A. A. Savchenko

Federal Research Center «Krasnoyarsk Science Center» of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of medical problems of the North;
Siberian Federal University


doctor of medicine, professor, head of the laboratory of the Cellular Molecular Physiology and Pathology;

Department of Medical Biology,

660022, Krasnoyarsk, P. Dzelezniaka str, 3Г

Russian Federation

A. G. Borisov

Federal Research Center «Krasnoyarsk Science Center» of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of medical problems of the North


PhD, leading researcher, laboratory of the Cellular Molecular Physiology and Pathology,


Russian Federation

I. V. Kudryavtsev

Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”


PhD (Biology), senior research associate, department of Immunology,

St. Petersburg

Russian Federation


  1. Савченко А. А., Здзитовецкий Д. Э., Борисов А. Г. Иммунометаболические нарушения при распространенном гнойном перитоните. Новосибирск, Наука, 2013, 9–34.
  2. Ding W., Wang K., Liu B., Fan X., Wang S., Cao J., Wu X., Li J. Open Abdomen Improves Survival in Patients With Peritonitis Secondary to Acute Superior Mesenteric Artery Occlusion. J. Clin. Gastroenterol. 2017, 51(9), e77-e82.
  3. Obi Y., Streja E., Mehrotra R., Rivara M. B., Rhee C. M., Soohoo M., Gillen D. L., Lau W. L., Kovesdy C. P., Kalantar-Zadeh K. Impact of Obesity on Modality Longevity, Residual Kidney Function, Peritonitis, and Survival Among Incident Peritoneal Dialysis Patients. Am. J. Kidney Dis. 2018, 71(6), 802–813.
  4. Mai M., Stengel S., Al-Herwi E., Peter J., Schmidt C., Rubio I., Stallmach A., Bruns T. Genetic variants of TRAF6 modulate peritoneal immunity and the risk of spontaneous bacterial peritonitis in cirrhosis: A combined prospective-retrospective study. Sci. Rep. 2017, 7(1), 4914.
  5. Mousa N., Besheer T., Abdel-Razik A., Hamed M., Deiab A. G., Sheta T., Eldars W. Can combined blood neutrophil to lymphocyte ratio and C-reactive protein be used for diagnosis of spontaneous bacterial peritonitis? Br. J. Biomed. Sci. 2018, 75(2), 71–75.
  6. Савченко А.А., Гвоздев И. И., Борисов А. Г., Черданцев Д. В., Первова О. В., Кудрявцев И. В., Мошев А. В. Особенности фагоцитарной активности и состояния респираторного взрыва нейтрофилов крови у больных распространенным гнойным перитонитом в динамике послеоперационного периода. Инфекция и иммунитет 2017, 7(1), 51–60.
  7. Cullaro G., Kim G., Pereira M. R., Brown R. S. Jr., Verna E. C. Ascites Neutrophil Gelatinase-Associated Lipocalin Identifies Spontaneous Bacterial Peritonitis and Predicts Mortality in Hospitalized Patients with Cirrhosis. Dig. Dis. Sci. 2017, 62(12), 3487–3494.
  8. Lee J. Y., Kim S. M., Park S. J., Lee S. O., Choi S. H., Kim Y. S., Woo J. H., Kim S. H. A rapid and non-invasive 2-step algorithm for diagnosing tuberculous peritonitis using a T cell-based assay on peripheral blood and peritoneal fluid mononuclear cells together with peritoneal fluid adenosine deaminase. J. Infect. 2015, 70(4), 356–366.
  9. Nemzek J. A., Fry C., Moore B. B. Adoptive transfer of fibrocytes enhances splenic T-cell numbers and survival in septic peritonitis. Shock 2013, 40(2), 106–114.
  10. Wang W., Shi Q., Dou S., Li G., Shi X., Jiang X., Wang Z., Yu D., Chen G., Wang R., Xiao H., Hou C., Feng J., Shen B., Ma Y., Han G. Negative regulation of Nod-like receptor protein 3 inflammasome activation by T cell Ig mucin-3 protects against peritonitis. Immunology 2018, 153(1), 71–83.
  11. Yu W., Yao D., Yu S., Wang X., Li X., Wang M., Liu S., Feng Z., Chen X., Li W., Wang L., Liu W., Ma J., Yu L., Tong C., Song B., Cui Y. Protective humoral and CD4(+) T cellular immune responses of Staphylococcus aureus vaccine MntC in a murine peritonitis model. Sci. Rep. 2018, 8(1), 3580.
  12. Кудрявцев И. В., Субботовская А. И. Опыт измерения параметров иммунного статуса с использованием шести-цветного цитофлуоримерического анализа. Медицинская иммунология 2015, 17(1), 19–26.
  13. Sutherland D. R., Ortiz F., Quest G., Illingworth A., Benko M., Nayyar R., Marinov I. High-sensitivity 5-, 6-, and 7-color PNH WBC assays for both Canto II and Navios platforms. Cytometry B Clin Cytom. 2018, 94(1), 1–15.
  14. Geng L., Liu J., Huang J., Lin B., Yu S., Shen T., Wang Z., Yang Z., Zhou L., Zheng S. A high frequency of CD8(+) CD28(–) T-suppressor cells contributes to maintaining stable graft function and reducing immunosuppressant dosage after liver transplantation. Int. J. Med. Sci. 2018, 15(9), 892–899.
  15. Langenhorst D., Haack S., Göb S., Uri A., Lühder F., Vanhove B., Hünig T., Beyersdorf N. CD28 costimulation of T helper 1 cells enhances cytokine release in vivo. Front Immunol. 2018, 9, 1060.
  16. Marangoni F., Zhang R., Mani V., Thelen M., Ali Akbar N. J., Warner R. D., Äij ö T., Zappulli V., Martinez G. J., Turka L. A., Mempel T. R. Tumor tolerancepromoting function of regulatory T cells is optimized by CD28, but strictly dependent on calcineurin. J. Immunol. 2018, 200(10), 3647–3661.
  17. Porciello N., Kunkl M., Tuosto L. CD28 between tolerance and autoimmunity: the side effects of animal models. F1000Res. 2018. 7, pii: F1000.
  18. Кудрявцев И.В., Борисов А. Г., Волков А. Е., Савченко А. А., Серебрякова М. К., Полевщиков А. В. Анализ уровня экспрессии CD56 и CD57 цитотоксическими Т-лимфоцитами различного уровня дифференцировки. Тихоокеанский медицинский журнал 2015, 2, 30–35.
  19. Кудрявцев И. В., Борисов А. Г., Кробинец И. И., Савчен ко А. А., Серебрякова М. К. Определение основных субпопуляций цитотоксических Т-лим фо цитов методом многоцветной проточной цитометрии. Медицинская иммунология 2015, 17(6), 525–538.
  20. Hu G., Wang S. Prognostic role of tumor-infiltrating CD57-positive lymphocytes in solid tumors: a metaanalysis. Oncotarget 2017, 9(8), 8111–8119.
  21. Sopper S., Mustjoki S., White D., Hughes T., Valent P., Burchert A., Gjertsen B. T., Gastl G., Baldauf M., Trajanoski Z., Giles F., Hochhaus A., Ernst T., Schenk T., Janssen J. J., Ossenkoppele G. J., Porkka K., Wolf D. Reduced CD62L expression on T cells and increased soluble CD62L levels predict molecular response to tyrosine kinase inhibitor therapy in early chronic-phase chronic myelogenous leukemia. J. Clin. Oncol. 2017, 35(2), 175–184.
  22. Spadaro M., Caldano M., Marnetto F., Lugaresi A., Bertolotto A. Natalizumab treatment reduces L-selectin (CD62L) in CD4+ T cells. J. Neuroinfl ammation 2015, 12, 146.
  23. Савченко А.А., Каспаров Э. В., Арутюнян С. С., Борисов А. Г., Кудрявцев И. В., Гвоздев И. И., Мошев А. В. Взаимосвязь содержания Th- и T-регуляторных клеток в крови и хемилюминесцентной активности нейтрофилов у больных хроническим эндометритом и аднекситом. Медицинская иммунология 2018, 20(1), 61–72.
  24. Schmid T., Falter L., Weber S., Müller N., Molitor K., Zeller D., Weber-Steffens D., Hehlgans T., Wajant H., Mostböck S., Männel D. N. Chronic inflammation increases the sensitivity of mouse Treg for TNFR2 costimulation. Front Immunol. 2017, 8, 1471.
  25. Sun G., Hou Y., Gong W., Liu S., Li J., Yuan Y., Zhang D., Chen Q., Yan X. Adoptive induced antigenspecific Treg cells reverse inflammation in collageninduced arthritis mouse model. Inflammation 2018, 41(2), 485–495.

Copyright (c) 2019 Belenjuk V.D., Savchenko A.A., Borisov A.G., Kudryavtsev I.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № 77 - 11525 от 04.01.2002.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies