Effect of melatonin include into original dermal film upon adaptive immunity in experimental thermal trauma

Cover Page

Cite item

Abstract

Adaptive immunity changes in thermal trauma (TT) increase the risk of infectious complications and limit repair of the lesion. Hence, search and preclinical testing of effective and safe means to locally manage TT, containing bioregulators, is an urgent task of modern medicine. Dermal films (DF) are an innovative and popular variant of wound coatings for small-area burns, and pleiotropic properties of melatonin (MT) suggest its effectiveness in TT. The aim of the work is to investigate the effect of MT, as a component of original DF, upon the indexes of adaptive immunity in experimental TT. The experiment was performed on 115 male Wistar rats. Grade IIIA TT with area of 3.5% were produced by contact with boiling water for 12 s. DF with an area of 12 cm2 based on sodium carboxymethylcellulose contatning MT (5 mg/g) was applied daily for 5 days. Similar DF matrix, but without MT, was used in the control group, Amounts of CD3+ and CD45RA+ cells in blood, and lymphocyte subpolulations with early and late signs of apoptosis and partially necrotic cells were evaluated with flow cytofluorometer, as well as IgG and IgM concentrations were measured in blood serum using rat test systems. With TT, the amount of CD3+ in the blood decreases on days +5 and +10, CD45RA+, on days +5, +10 and +20, and the concentration of IgG in the serum, on days +5 and +10 of observation. On days +5 and +10 after TT, a relationship was established between CD3+ and the number of lymphocytes with signs of early apoptosis (R = -0.47; p < 0.05; R = -0.51; p < 0.05, respectively), and signs of late apoptosis and necrosis (R = -0.64; p < 0.05; R = -0.42; p < 0.05, respectively), between CD45RA+ and the number of lymphocytes with signs of early apoptosis (R = -0.47; p < 0.05; R = -0.49; p < 0.05, respectively), and signs of late apoptosis and necrosis (R = -0.57; p < 0.05; R = -0.49; p < 0.05, respectively). Usage of MT in DF composition leads to increase in blood CD3+ on the 5th and 20th days, CD45RA+, on the 5th day, and an increase in serum IgG concentration was observed on the 5th and 10th days following TT. Restriction of necrotic and apoptotic death of blood lymphocyte may be among the mechanisms of the immunotropic effect produced by MT which is, probably, due to its local antioxidant and anti-inflammatory action in the TT area.

About the authors

M. V. Osikov

South Ural State Medical University

Author for correspondence.
Email: prof.osikov@yandex.ru
ORCID iD: 0000-0001-6487-9083

Mikhail V. Osikov - PhD, MD (Medicine), Professor, Head, Department of Pathological Physiology, South Ural State Medical University.

454092, Chelyabinsk, Vorovsky str., 64.

Phone: 7 (919) 122-37-99.

Russian Federation

E. V. Simonyan

South Ural State Medical University

Email: prof.osikov@yandex.ru

Elena V. Simonyan - PhD (Pharmacy), Associate Professor, Head, Department of Pharmacy and Chemistry at the Pharmaceutical Faculty, South Ural State Medical University.

454092, Chelyabinsk, Vorovsky str., 64.

Russian Federation

A. A. Ageeva

South Ural State Medical University

Email: anne.ageeva.r@yandex.ru

Anna A. Ageeva - Assistant Professor, Department of Pathological Physiology, South Ural State Medical University.

454092, Chelyabinsk, Vorovsky str., 64.

Russian Federation

K, V. Nikushkina

South Ural State Medical University

Email: kanc@chelsma.ru

Karina V. Nikushkina - PhD (Medicine), Leading Research Associate, Research Institute of Immunology, South Ural State Medical University.

454092, Chelyabinsk, Vorovsky str., 64.

Russian Federation

References

  1. Осиков М.В. Влияние эритропоэтина на процессы свободнорадикального окисления и экспрессию гликопротеинов в тромбоцитах при хронической почечной недостаточности // Бюллетень экспериментальной биологии и медицины, 2014. Т. 157, № 1. С. 30-33.
  2. Осиков М.В. Роль орозомукоида в регуляции активности систем плазменного протеолиза при экспериментальной почечной недостаточности // Бюллетень экспериментальной биологии и медицины, 2009. Т. 148, № 7. С. 27-30.
  3. Осиков М.В., Гизингер О.А., Огнева О.И. Механизм влияния мелатонина на иммунный статус при экспериментальном десинхронозе в условиях светодиодного освещения // Медицинская иммунология, 2015. Т. 17, № 6. С. 517-524.
  4. Осиков М.В., Симонян Е.В., Саедгалина О.Т. Влияние эритропоэтина на содержание продуктов перекисного окисления липидов в лимфоцитах при экспериментальной термической травме // Казанский медицинский журнал, 2015. Т. 96, № 5. С. 849-853.
  5. Осиков М.В., Телешева Л.Ф., Агеев Ю.И. Влияние эритропоэтина на апоптоз лимфоцитов при экспериментальной хронической почечной недостаточности // Бюллетень экспериментальной биологии и медицины, 2015. Т. 159, № 3. С. 326-328.
  6. Осиков М.В., Телешева Л.Ф., Лихачева А.Г. Влияние локального применения эпидермального фактора роста на врожденный иммунитет и клеточный состав очага повреждения при экспериментальной термической травме // Бюллетень экспериментальной биологии и медицины, 2014. Т. 157, № 3. С. 280-283.
  7. Acuña-Castroviejo D., Rahim I., Acuña-Fernández C., Fernández-Ortiz M., Solera-Marín J., Sayed R.K.A., Díaz-Casado M.E., Rusanova I., López L.C., Escames G. Melatonin, clock genes and mitochondria in sepsis. Cell. Mol. Life Sci., 2017, no. 74, pp. 3965-3987.
  8. Barrett L.W., Fear V.S., Waithman J.C., Wood F.M., Fear M.W. Understanding acute burn injury as a chronic disease. Burns Trauma, 2019, Vol. 7, 23. doi: 10.1186/s41038-019-0163-2.
  9. Bordoloi D., Banik K., Shabnam B., Padmavathi G., Monisha J., Arfuso F., Dharmarajan A., Mao X., Lim L.H.K., Wang L. TIPE family of proteins and its implications in different chronic diseases. Int. J. Mol. Sci., 2018, Vol. 19, no. 10, 2974. doi: 10.3390/ijms19102974.
  10. Dai J., Choo M.K., Park J.M., Fisher D.E. Topical ROR inverse agonists suppress inflammation in mouse models of atopic dermatitis and acute irritant dermatitis. J. Investig. Dermatol., 2017, Vol. 137, no. 12, pp. 2523-2531.
  11. Dong K., Goyarts E., Rella A., Pelle E., Wong Y.H., Pernodet N. Age associated decrease of MT-1 Melatonin receptor in human dermal skin fibroblasts impairs protection against UV-induced DNA damage. Int. J. Mol. Sci., 2020, Vol. 21, no. 1, E326. doi: 10.3390/ijms21010326.
  12. Entezami K., Mosavi T. Determination of lymphocytes surface markers in patients with thermal burns and the influence of burn size on mononuclear cell subsets. Med. J. Islam. Repub. Iran, 2017, Vol. 31, 38. doi: 10.14196/mjiri.31.38.
  13. Favero G., Franceschetti L., Bonomini F., et al. Melatonin as an anti-inflammatory agent modulating inflammasome activation. Int. J. Endocrinol., 2017, Vol. 2017, 1835195. doi: 10.1155/2017/1835195.
  14. Galano A., Tan D.X., Reiter R.J. Melatonin: a versatile protector against oxidative DNA damage. Molecules, 2018, Vol. 23, E530. doi: 10.3390/molecules23030530.
  15. Norman G., Christie J., Liu Z., Westby M. J., Jefferies J. M., Hudson T., et al. Antiseptics for burns. Cochrane Database Syst. Rev., 2017, no. 7, Cd011821. doi: 10.1002/14651858.cd011821.
  16. Peterson N.C., Nunamaker E.A., Turner P.V. To treat or not to treat: the effects of pain on experimental parameters. Comp. Med., 2017, Vol. 67, no. 6, pp. 469-482.
  17. Rani M., Schwacha M.G. The composition of T-cell subsets are altered in the burn wound early after injury. PLoS One, 2017, Vol. 12, no. 6, e0179015. doi: 10.1371/journal.pone.0179015.
  18. Ringheim G.E., Lee L., Laws-Ricker L., Delohery T. Teriflunomide attenuates immunopathological changes in the dark agouti rat model of experimental autoimmune encephalomyelitis. Front. Neurol., 2013, Vol. 4, 169. doi: 10.3389/fneur.2013.00169.
  19. Rusanova I., Martmez-Ruiz L., Florido J., Rodriguez-Santana C., Guerra-Librero A., Acuna-Castroviejo D., Escames G. Protective Effects of melatonin on the skin: future perspectives. Int. J. Mol. Sci., 2019, Vol. 20, no. 19, E4948. doi: 10.3390/ijms20194948.
  20. Skobowiat C., Brozyna A.A., Janjetovic Z., Jeayeng S., Oak A.S.W., Kim T.K., Panich U., Reiter R.J., Slominski A.T. Melatonin and its derivatives counteract the ultraviolet B radiation-induced damage in human and porcine skin ex vivo. J. Pineal Res., 2018, Vol. 65, no. 2, e12501. doi: 10.1111/jpi.12501.
  21. Slominski A.T., Kim T.K., Kleszczynski K., Semak I., Janjetovic Z., Sweatman T., Skobowiat C., Steketee J.D., Lin Z., Postlethwaite A., Li W., Reiter R.J., Tobin D.J. Characterization of serotonin and N-acetylserotonin systems in the human epidermis and skin cells. J. Pineal Res., 2020, Vol. 68, no. 2, e12626. doi: 10.1111/jpi.12626.
  22. Stone Ii R., Natesan S., Kowalczewski C.J., Mangum L.H., Clay N.E., Clohessy R.M., Carlsson A.H., Tassin D.H., Chan R.K., Rizzo J.A., Christy R.J. Advancements in regenerative strategies through the continuum of burn care. Front. Pharmacol., 2018, Vol. 9, 672. doi: 10.3389/fphar.2018.00672.
  23. Tanno H., Kawakami K., Kanno E., Suzuki A., Takagi N., Yamamoto H., Ishii K., Imai Y., Maruyama R., Tachi M.J.W.R., et al. Invariant NKT cells promote skin wound healing by preventing a prolonged neutrophilic inflammatory response. Wound Repair Regener., 2017, Vol. 25, pp. 805-815.
  24. Wang X., Balaji S., Steen E.H., Li H., Rae M.M., Blum A.J., Miao Q., Butte M.J., Bollyky P.L., Keswani S.G. T lymphocytes attenuate dermal scarring by regulating inflammation, neovascularization, and extracellular matrix remodeling. Adv. Wound Care (New Rochelle), 2019, Vol. 8, no. 11, pp. 527-537.
  25. Wang Y., Beekman J., Hew J., Jackson S., Issler-Fisher A.C., Parungao R., Lajevardi S.S., Li Z., Maitz P.K.M. Burn injury: challenges and advances in burn wound healing, infection, pain and scarring. Adv. Drug Deliv. Rev., 2018, no. 123, pp. 3-17.

Supplementary files

There are no supplementary files to display.


Copyright (c) 2021 Osikov M.V., Simonyan E.V., Ageeva A.A., Nikushkina K.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Свидетельство о регистрации СМИ ПИ № 77 - 11525 от 04.01.2002 выдано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies