ПРОГНОСТИЧЕСКАЯ ЗНАЧИМОСТЬ ФАКТОРА РОСТА ГЕПАТОЦИТОВ ПРИ НЕМЕТАСТАТИЧЕСКОМ КОЛОРЕКТАЛЬНОМ РАКЕ



Цитировать

Полный текст

Аннотация

Резюме

Фактор роста гепатоцитов (HGF) - продуцируется мезенхимальными клетками и является лигандом к тирозинкиназному рецептору с-МЕТ, действует как цитокин на клетки эпителиального происхождения. В опухолевых клетках стимулирует митогенез и ангиогенез. HGF обнаружен во многих органах, включая молочные железы, легкие, почки и печень. Опухолевые клетки некоторых солидных опухолей, в частности, клетки аденокарциномы поджелудочной железы, в отличие от стромальных звездчатых клеток железы, не секретируют HGF. Целью исследования была оценка прогностической значимости экспрессии HGF в опухолевой ткани при колоректальном раке. В ретроспективное исследование были включены 50 пациентов с колоректальным раком II-III стадии. Всем пациентам проведено радиакальное оперативное лечение, с последующей адъювантной химиотерапией по схеме FOLFOX/XELOX. В образцах первичной опухоли, полученных интраоперационно, методом количественной ПЦР оценивали уровень экспрессии HGF. Статистическую обработку полученных данных проводили с использованием ПО STATISTICA 13.0 (StatSoft, USA), BioStat v.7.1., Jamovi 1.6.8. Исследование направлено на изучение нового маркера, носит поисковый характер. Сравнение признаков в случае ненормального распределения проводилось с помощью непараметрического U-критерия Манна-Уитни. Для анализа выживаемости без прогрессирования использовались критерии линейной регрессии Кокса и Каплан-Майера. При обсуждении результатов были использованы полученные нами ранее данные по уровню экспрессии TGFβ, CXCL8 в опухолевой ткани пациентов с колоректальным раком. В результате проведенных исследований установлено, что в 60% исследованных образцов опухоли изученный маркер не экспрессировался, но при этом был значимо выше, чем в образцах линии резекции. Анализ безрецидивной выживаемости по Каплан-Майеру у пациентов с колоректальным раком по уровню экспрессии HGF (спрогнозированный уровень по оценке пропорциональных рисков – 0,7) показал, что медиана дожития в 1 (экcпрессия HGF более 0,7) и 2 (экспрессия HGF менее 0,7) группах составила 23,3 и 62,9 месяцев, соответственно (лонг-ранговый критерий р=0,215). Таким образом, установлено, что уровень мРНК HGF в опухоли пациентов с колоректальным раком не зависит от возраста, стадии заболевания и чувствительности к химиотерапии по схеме FOLFOX/XELOX. Значимо снижен уровень экспрессии в опухолях с KRAS-мутацией и повышен в опухолях с BRAF-мутацией EGFR-сигнального пути и при низкой дифференцировки опухоли. Таким образом, использование уровня экспрессии HGF в опухолевой ткани пациентов с неметастатическим колоректальным раком до начала химиотерапии для оценки прогноза безрецидивного периода возможно только в совокупности с показателями экспрессии TGFβ, CXCL8 в ткани и уровня РЭА в крови этих больных.

Полный текст

Introduction.
The hepatocyte growth factor (HGF)/c-MET receptor axis is involved in signaling in basic biological processes such as stimulation of epithelial cell movement, three-dimensional morphogenesis and regulation of apoptosis [1]. Recent studies have shown that aberrant HGF/c-MET signaling can lead to uncontrolled proliferation of tumor cells, their increased mobility, invasion and angiogenesis, playing a significant role in the development of cancer, including gastric cancer [2], breast cancer [ 3], colorectal cancer [4].
HGF is produced by mesenchymal cells and is a ligand for the tyrosine kinase receptor c-MET, acting as a cytokine on cells of epithelial origin, stimulating mitogenesis and angiogenesis [5].
Hepatocyte growth factor is found in many organs, including breast, lung, kidney and liver. There is ambiguous information that tumor cells of some solid tumors, in particular pancreatic adenocarcinoma cells, unlike stromal stellate cells of the gland, do not secrete HGF [6]. In tumor cells, HGF has been shown to play an important role in proliferation and angiogenesis and promotes tumor cell growth, infiltration into surrounding tissues, and metastasis [7].
At the same time, the literature provides data confirming that higher expression of both HGF and its receptor c-MET was associated with a better prognosis [8].

Colorectal cancer is one of the most common tumors in both men and women and the second leading cause of cancer mortality worldwide [9]. The modern approach to treatment involves the use of various chemotherapy regimens, targeted or immunotherapy, depending on the clinical situation and molecular genetic subtype of the tumor. The mechanisms of tumor resistance to therapy are not fully understood. One of the reasons for resistance to antiangiogenic therapy may be a switch to an alternative path of angiogenesis - the formation of vessels from previous ones, intussusception, vasculogenesis, vascular mimicry, differentiation of tumor cells into endothelial cells, tumor growth along the vessels, including switching from VEGF-A to an alternative proangiogenic factor. Hypoxia, on the one hand, leads to clonal selection of tumor cells with high invasive potential [10]. On the other hand, hypoxia activates an invasive growth program driven by HGF. The latter allows tumor cells to avoid the effects of antiangiogenic therapy [11].

Purpose of the study.
Assessing the prognostic significance of HGF expression in tumor tissue in non-metastatic colorectal cancer (CRC).

Materials and methods.

The retrospective study was carried out at the research medical and biological center of Ulyanovsk State University (UlSU). As biomaterial, histological sections of tumors containing at least 80% of tumor cells and sections from blocks of resection lines of the same tumor samples obtained intraoperatively from patients with colorectal cancer who received treatment on the basis of the Regional Clinical Oncology Dispensary of Ulyanovsk during the period from 2014 were used to 2020 The study protocol was approved by the ethics committee of the Institute of Medicine, Ecology and Physical Culture of Ulyanovsk State University (No. 9 of September 15, 2014). The clinical trial included 50 patients with non-metastatic colorectal cancer. The characteristics of clinical observations are presented in Table 1.

Patients were examined every 2 months. chemotherapy (CT) and after its completion. At the same time, a general clinical, biochemical blood test, general urine test, blood for cancer embryonic antigen (CEA), CA 19/9 were assessed. Instrumental examination methods were carried out: radiography of the chest organs in two projections, ultrasound of the abdominal organs, pelvis, retroperitoneum, fibrocolonoscopy (if indicated). In case of doubtful results of standard examination methods, multislice computed tomography or magnetic resonance imaging of the chest, abdominal cavity, and pelvis with intravenous contrast was performed. At the end of treatment, patients were under the dynamic supervision of an oncologist, with periodic control examinations in accordance with clinical recommendations.

FFPE tumor samples were used for expression analysis in the study. RNA isolation from paraffin blocks (FFPE) was carried out from tumor sections 10-15 µm thick (total area of at least 2 cm2) using SileksMagNA magnetic particles (KIRFFPE0100 kit, Silex LLC, Moscow, Russia) according to the manufacturer’s protocol. Immediately after DNA extraction, a reverse transcription (RT) reaction was performed. To obtain RNA from DNA on a template, a random hexanucleotide primer and components of the MMLVRT Kit (EvrogenLab LLC, Moscow) were used. Quantitative real-time PCR was then performed using the intercalating dye Sybr. Primers for PCR specific to HGF1 (Forward: GTAAATGGGATTCCAACACGAACA Reverse: TGTCGTGCAGTAAGAACCCAACTC) were synthesized on the basis of EvrogenLab LLC (Moscow, Russia). The GAPDH gene was used as a referee (house-keeping) gene. The reaction mixture for PCR contained 5 μl of PCRmix (set “Ready mix for PCR qPCRmix-HSSYBR”), a mixture of forward and reverse primers in a final concentration of 0.4 μM, 5-8 μl of DNA (50 ng per reaction), sterile water in the volume required up to 25 µl reaction. PCR was carried out in triplets on a CFX-96 BioRad (USA) thermal cycler. Calculation of normalized expression of the studied gene relative to the reference gene was carried out using CFX Manager software from Bio-Rad Laboratories.

Statistical data processing was performed using STATISTICA 13.0 software (StatSoft, USA), BioStat v.7.1., Jamovi 1.6.8. The study is aimed at studying a new marker and is exploratory in nature. Comparison of characteristics in the case of non-normal distribution was carried out using the nonparametric Mann-Whitney U test. Cox and Kaplan-Meier linear regression tests were used to analyze progression-free survival. When discussing the results, we used our previously obtained data on the level of expression of TGFβ and CXCL8 in the tumor tissue of patients with CRC [12].

Research results.
As a result of the studies, it was established that in 60% of the studied tumor samples the studied marker was not expressed; in other cases, the level of HGF mRNA in the tumor in patients with colorectal cancer did not depend on age, did not differ significantly at stages II and III of the disease, but was significant
higher than in resection line specimens.

When a tumor has a BRAF mutation in the EGFR signaling pathway, the level of HGF mRNA is significantly higher than that in wild-type tumors and in tumor tissue with NRAS and KRAS mutations. Pronounced differences in the level of HGF mRNA were detected in poorly differentiated primary tumors compared with moderately and highly differentiated tumors (Table 2).

We previously established dependent overexpression of transforming growth factor TGFb and interleukin-8 (CXCL8), which characterize a certain phenotype of CRC tumors with high metastatic potential [12]. In a multivariate version of Cox regression, it was found that dependent prognostic factors in the occurrence of relapse in patients with stages II-III CRC are right-sided localization, an increase in the blood level of CEA (HR 23.04 CI95%1.95-272.74, p = 0.013) , increased coexpression of HGF (HR 0.64 CI95% 0.42-0.98, p=0.039), TGFβ (HR 0.17 CI95% 0.04-0.72, p=0.017), CXCL8 (HR 3, 51 CI95%1.16-10.56, p=0.026) in the primary tumor (p<0.05).

Kaplan-Meier analysis of disease-free survival in CRC patients according to the level of HGF expression (predicted level by proportional hazards assessment - 0.7) showed that the median survival was 1 (HGF expression more than 0.7) and 2 (HGF expression less than 0.7 ) groups was 23.3 and 62.9 months, respectively (long-rank test p = 0.215) (Fig. 1).

Discussion.
Today, the presence of mutations in the KRAS, NRAS, and BRAF genes is used as prognostic factors for colorectal cancer. It has been shown that KRAS gene mutations occur in 30-50% of CRC cases [13]. Today it has been established that KRAS mutations worsen the prognosis of cancer of the right half of the colon. However, no statistically significant dependence of disease progression on KRAS status was identified [14]. We found lower levels of HGF mRNA in tumors with a KRAS mutation.

The BRAF oncogene plays an important role in the mitogen-activated proteinase signaling pathway. About 10% of patients with CRC have a BRAF gene mutation, which determines increased cell proliferation and, accordingly, tumor growth [15]. In our studies, we determined that in tumors with a BRAF mutation in the EGFR signaling pathway, the level of HGF mRNA is significantly higher than that in “wild type” tumors and tumor tissue with NRAS and KRAS mutations. This dramatic activation of the HGF/c-MET signaling pathway makes it possible to get closer to deciphering the mechanisms that determine, in this case, the high aggressiveness of the tumor.

Conclusion.
Using the level of HGF expression in the tumor tissue of patients with non-metastatic colorectal cancer before treatment to assess the prognosis of the relapse-free period is only possible in conjunction with the expression of TGFβ, CXCL8 in the tissue and the level of CEA in the blood of these patients.

×

Об авторах

Ирина Александровна Богомолова

«Федеральный научно-клинический центр медицинской радиологии и онкологии» ФМБА России

Email: 73bogomolova@gmail.com
ORCID iD: 0000-0003-3331-8632
SPIN-код: 7873-1172
Scopus Author ID: 57473985700

врач-онколог, заведующий отделением противоопухолевой лекарственной терапии стационара

Россия, 433507, Россия, Димитровград, ул.Курчатова,5В

Динара Ришатовна Долгова

Ульяновский государственный университет

Email: dolgova.dinara@yandex.ru
ORCID iD: 0000-0001-5475-7031
Scopus Author ID: 55378365200

к. б. н., доцент,доцент кафедры физиологии и патофизиологии медицинского факультета

 

Россия, 432017,Россия,Ульяновск, ул. Арх. Ливчака,2

Инна Ивановна Антонеева

Ульяновский государственный университет;
ГУЗ Областной клинический онкологический диспансер г. Ульяновска

Email: aii72@mail.ru
ORCID iD: 0000-0002-1525-2070
Scopus Author ID: 6504605612

д.м.н., профессор, профессор кафедры онкологии и лучевой диагностики; заведующая отделением онкогинекологии

 

Россия, 432017, Россия, Ульяновск, ул. Архитектора Ливчака, 2

Татьяна Владимировна Абакумова

Ульяновский государственный университет

Email: taty-abakumova@yandex.ru
ORCID iD: 0000-0001-7559-5246
Scopus Author ID: 37103623900

д.б.н., доцент, профессор кафедры физиологии и патофизиологии УлГУ

 

Россия, 432017, Россия, Ульяновск, ул. Архитектора Ливчака, 2

Татьяна Петровна Генинг

Ульяновский государственный университет

Email: Naum-53@yandex.ru
ORCID iD: 0000-0002-5117-1382
Scopus Author ID: 6507217338

д.б.н., профессор, зав. кафедрой физиологии и патофизиологии УлГУ

 

Россия, 432017, Россия, Ульяновск, ул. Архитектора Ливчака, 2

Юрий Дмитриевич Удалов

«Федеральный научно-клинический центр медицинской радиологии и онкологии» ФМБА России

Автор, ответственный за переписку.
Email: info@fnkcrio.ru
ORCID iD: 0000-0001-6790-4248
Scopus Author ID: 57194193916

д.м.н., доцент, главный внештатный специалист ФМБА России по медицинской радиологии, генеральный директор ФГБУ «Федеральный научно-клинический центр медицинской радиологии и онкологии» ФМБА

Россия, 433507, Россия, Димитровград, ул.Курчатова,5В

Список литературы

  1. 1. Trusolino L, Bertotti A, Comoglio P.M. MET signalling: Principles and functions in development, organ regeneration and cancer. Nat Rev Mol Cell Biol. 2010;11:834–848. doi: 10.1038/nrm3012.
  2. 2. Wang C, Xi W, Ji J, et al. The prognostic value of HGF-c-MET signaling pathway in Gastric Cancer: a study based on TCGA and GEO databases. Int J Med Sci. 2020;17(13):1946-1955. doi: 10.7150/ijms.44952
  3. 3. Jones GS, Hoadley KA, Olsson LT, et al. Hepatocyte growth factor pathway expression in breast cancer by race and subtype. Breast Cancer Res. 2021;23(1):80. doi: 10.1186/s13058-021-01460-5
  4. 4. Seneviratne D, Ma J, Tan X, et al. Genomic instability causes HGF gene activation in colon cancer cells, promoting their resistance to necroptosis. Gastroenterology. 2015;148(1):181-191.e17. doi: 10.1053/j.gastro.2014.09.019
  5. 5. Bottaro DP, Rubin JS, Faletto DL, et al. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science. 1991;251(4995):802-4. doi: 10.1126/science.1846706
  6. 6. Xu Z, Pang TCY, Liu AC, et al. Targeting the HGF/c-MET pathway in advanced pancreatic cancer: a key element of treatment that limits primary tumour growth and eliminates metastasis. Br J Cancer. 2020;122(10):1486-1495. doi: 10.1038/s41416-020-0782-1
  7. 7. Birchmeier C, Birchmeier W, Gherardi E, et al. Met, metastasis, motility and more. Nat Rev Mol Cell Biol. 2003 Dec;4(12):915-25. doi: 10.1038/nrm1261
  8. 8. Qiu SQ, van Rooijen J, Nienhuis HH, et al. High hepatocyte growth factor expression in primary tumor predicts better overall survival in male breast cancer. Breast Cancer Res. 2020;22(1):30. doi: 10.1186/s13058-020-01266-x.
  9. 9. Viale PH. The American Cancer Society's Facts & Figures: 2020 Edition. J Adv Pract Oncol. 2020;11(2):135-136. doi: 10.6004/jadpro.2020.11.2.1
  10. 10. Rapisarda A, Melillo G. Role of the hypoxic tumor microenvironment in the resistance to anti-angiogenic therapies. Drug Resist Updat. 2009;12(3):74-80. doi: 10.1016/j.drup.2009.03.002
  11. 11. Jahangiri A, De Lay M, Miller LM, et al. Gene expression profile identifies tyrosine kinase c-Met as a targetable mediator of antiangiogenic therapy resistance. Clin Cancer Res. 2013;19(7):1773-83. doi: 10.1158/1078-0432.CCR-12-1281
  12. 12. Богомолова И.А., Долгова Д.Р., Антонеева И.И., Абакумова Т.В., Мягдиева И.Р., Песков А.Б., Генинг Т.П. Предиктивная значимость регуляторов воспаления TGFb1 и CXCL8 в опухолевой ткани при колоректальном раке. Бюллетень сибирской медицины. 2023;22(1):7–13. doi: 10.20538/1682-0363-2023-1-7-13.
  13. 13. Кит О.И., Геворкян Ю.А., Солдаткина Н.В., и соавт. Частота и спектр мутаций гена kras при распространенном колоректальном раке. Клинико-морфологические особенности. Молекулярная медицина. 2015;5: 26-29.
  14. 14. Кит О.И., Геворкян Ю.А., Солдаткина Н.В., и соавт. Современные прогностические факторы при колоректальном раке. Колопроктология. 2021;20(2):42–49. doi: 10.33878/2073-7556-2021-20-2-42-49
  15. 15. Wang J, Shen J, Huang C, et al. Clinicopathological Significance of BRAFV600E Mutation in Colorectal Cancer: An Updated Meta-Analysis. J Cancer. 2019;10(10):2332-2341. doi: 10.7150/jca.30789

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Богомолова И.А., Долгова Д.Р., Антонеева И.И., Абакумова Т.В., Генинг Т.П., Удалов Ю.Д.,

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № 77 - 11525 от 04.01.2002.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах