DIAGNOSTIC UTILITY OF INFLAMMASOMES AMONG SUBJECTS WITH BOH IN POST-COVID-19



Цитировать

Полный текст

Аннотация

The diagnostic utility of inflammasomes in Bad Obstetric History (BOH) following COVID-19 remains a critical area of investigation. COVID-19, which emerged in late 2019, and was caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has globally impacted health. The virus primarily targets Angiotensin-Converting Enzyme2 (ACE2) receptors, with elevated expression in various organs. Inflammasomes, integral to innate immunity, play a pivotal role in regulating proinflammatory responses, culminating in the release of cytokines and gasdermin-D-mediated pyroptosis. The pathophysiology of COVID-19 involves systemic inflammation, leading to a cytokine surge and instances of post-infectious Multi-system Inflammatory Syndrome (MIS). Diagnostic insights into inflammation post-COVID-19 rely on biomarkers such as IL-6, TNF-α and reactive oxygen species, with molecular probes facilitating imaging. A rigorous literature review was conducted using databases like PubMed, Google Scholar, Scopus, and Web of Science, focusing on studies (2015-2023) related to inflammasomes, proinflammatory cytokines, and serum markers in BOH post-COVID-19. Data from 76 selected articles were systematically extracted, categorized, and analyzed to identify diagnostic patterns and therapeutic interventions. The findings were synthesized into a manuscript emphasizing the diagnostic utility of inflammasomes, with multiple refinements ensuring clarity and scientific rigor. Exploring inflammasomes in BOH post-COVID-19 is promising, as inflammation and cytokine surges suggest their diagnostic potential. Further research is needed to confirm their role and improve diagnostic strategies for viral-induced inflammatory outcomes. This review explores the potential diagnostic significance of inflammasomes among subjects with BOH following COVID-19, emphasizing the need for a comprehensive understanding of the inflammatory processes associated with this unique clinical scenario.

Об авторах

Aswathi Palakkattu Veetil

Meenakshi Academy of Higher Education (Deemed to be university) Chennai, Tamil Nadu, India

Email: aswathitharanath@gmail.com

MSc

Research Scholar, Department of Microbiology and Immunology, Meenakshi Academy of Higher Education and Research (Deemed to be University), Chennai, Tamil Nadu, India

 

Индия

Duraisamy Nallusamy

Meenakshi Academy of Higher Education (Deemed to be university) Chennai, Tamil Nadu, India

Email: drnallusamy@maher.ac.in

Ph.D

Assistant Professor/Research Scientist, Meenakshi Academy of Higher Education and Research (Deemed to be University),  Chennai, Tamil Nadu, India

Индия

Ganapathy Rajendran

SRM Institute of Science and Technology, Ramapuram, Tamil Nadu, India

Email: grajendrannrm@gmail.com

Ph.D

Assistant Professor, Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Ramapuram, Chennai-89, Tamil Nadu, India

Индия

Srinivasan Senthamarai

Meenakshi Medical College Hospital and Research Institute, Enathur,Kanchipuram, Tamil Nadu, India

Email: thamaraimicro@gmail.com

MBBS, MD

Professor and HOD, Department of Microbiology, Meenakshi Medical College Hospital and Research Institute, Enathur, Kanchipuram, Tamil Nadu, India

Индия

Sheeja Mullukalayil Joseph

Meenakshi Academy of Higher Education (Deemed to be university) Chennai, Tamil Nadu, India

Email: srsudhanyamsj@gmail.com

MSc

Research Scholar, Department of Biochemistry, Meenakshi Academy of Higher Education and Research (Deemed to be University), Chennai, Tamil Nadu, India

Индия

Priyanka Krishnan

Meenakshi Academy of Higher Education (Deemed to be university) Chennai, Tamil Nadu, India

Email: priya.priyankakrishnan@gmail.com

MSc

Research Scholar, Department of Pathology, Meenakshi Academy of Higher Education and Research (Deemed to be University), Chennai, Tamil Nadu, India

Индия

Nitha Nellikuzhimalayil Parameswaran

Meenakshi Academy of Higher Education (Deemed to be university) Chennai, Tamil Nadu, India

Email: nithajijo1982@gmail.com

MSc

Research Scholar, Department of Anatomy, Meenakshi Academy of Higher Education and Research (Deemed to be University), Chennai, Tamil Nadu, India

Индия

Jeena Jose

Meenakshi Academy of Higher Education (Deemed to be university) Chennai, Tamil Nadu, India

Email: jeena.j.joy@gmail.com

MSc

Research Scholar, Department of Anatomy and Molecular Biology, Meenakshi Academy of Higher Education and Research (Deemed to be University), Chennai, Tamil Nadu, India

Индия

Dinesh Roy Divakaran

Genetika Centre for Advanced Genetic Studies, Thiruvananthapuram, Kerala, India

Автор, ответственный за переписку.
Email: drdineshroyd@gmail.com

Ph.D

CEO & Senior Cytogeneticist, Genetika Centre for Advanced Genetic Studies, Thiruvananthapuram, Kerala, India

Индия, MMRA-128,Pettah P.O. Trivandrum- 695 024, Kerala, India

Список литературы

  1. Abbaspour N, Hurrell R, Kelishadi R. Review on iron and its importance for human health. J Res Med Sci. 2014 Feb;19(2):164-74.
  2. -
  3. Ahsan T, Rani B. A case of multisystem inflammatory syndrome post-COVID-19 infection in an adult. Cureus. 2020 Dec 7;12(12):e11933.
  4. - doi: 10.7759/cureus.11933.
  5. Al-Hilli NM, Al-Mosawi HM. The prevalence of anticardiolipin antibodies in women with bad obstetric history. Int J Curr Microbiol Appl Sci. 2014;3(2):547-53.
  6. -
  7. Al-Kuraishy HM, Al-Gareeb AI, Al-Harcan NA, Alexiou A, Batiha GE. Tranexamic acid and plasminogen/plasmin glaring paradox in COVID-19. Endocr Metab Immune Disord Drug Targets. 2023 Jan;23(1):35-45.
  8. - doi: 10.2174/1871530323666230105110555.
  9. Al-Kuraishy HM, Al-Gareeb AI, Al-Niemi MS, Al-Buhadily AK, Al-Harchan NA, Lugnier C. COVID-19 and phosphodiesterase enzyme type 5 inhibitors. J Microsc Ultrastruct. 2020 Oct-Dec;8(4):141-5.
  10. - doi: 10.4103/JMAU.JMAU_63_20.
  11. Al-Kuraishy HM, Hussien NR, Al-Naimi MS, Al-Buhadily AK, Al-Gareeb AI, Lugnier C. Renin–angiotensin system and fibrinolytic pathway in COVID-19: one-way skepticism. Biomed Biotechnol Res J. 2020 Aug;4(Suppl 1):S33-40.
  12. -
  13. Aymonnier K, Ng J, Fredenburgh LE, Zambrano-Vera K, Münzer P, Gutch S, Fukui S, Desjardins M, Subramaniam M, Baron RM, Raby BA. Inflammasome activation in neutrophils of patients with severe COVID-19. Blood Adv. 2022 Apr 12;6(7):2001-13.
  14. - doi: 10.1182/bloodadvances.2021006757.
  15. Bivona G, Agnello L, Ciaccio M. Biomarkers for prognosis and treatment response in COVID-19 patients. Ann Lab Med. 2021 Nov;41(6):540-8.
  16. - doi: 10.3343/alm.2021.41.6.540.
  17. Blencowe H, Cousens S, Oestergaard MZ, Chou D, Moller AB, Narwal R, Adler A, Garcia CV, Rohde S, Say L, Lawn JE. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet. 2012 Jun 9;379(9832):2162-72.
  18. - doi: 10.1016/S0140-6736(12)60820-4.
  19. Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. 2016 Jul;16(7):407-20. - doi: 10.1038/nri.2016.58.
  20. Chen D, Yang H, Cao Y, Cheng W, Duan T, Fan C, Fan S, Feng L, Gao Y, He F, He J. Expert consensus for managing pregnant women and neonates born to mothers with suspected or confirmed novel coronavirus (COVID-19) infection. Int J Gynaecol Obstet. 2020 May;149(2):130-6.
  21. - doi: 10.1002/ijgo.13146.-
  22. Chen G, Wu DI, Guo W, Cao Y, Huang D, Wang H, Wang T, Zhang X, Chen H, Yu H, Zhang X. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020 May;130(5):2620-9.
  23. - doi: 10.1172/JCI137244.
  24. Choi JR. Development of point-of-care biosensors for COVID-19. Front Chem. 2020 May 27;8:517.
  25. - doi: 10.3389/fchem.2020.00517.
  26. Cirino AL, Harris S, Lakdawala NK, Michels M, Olivotto I, Day SM, Abrams DJ, Charron P, Caleshu C, Semsarian C, Ingles J. Role of genetic testing in inherited cardiovascular disease: a review. JAMA Cardiol. 2017 Oct 1;2(10):1153-60.
  27. - doi: 10.1001/jamacardio.2017.3033.
  28. Cpere N. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Zhonghua Liu Xing Bing Xue Za Zhi. 2020 Feb;41(2):145-51.
  29. -
  30. de Rivero Vaccari JC, Dietrich WD, Keane RW, de Rivero Vaccari JP. The inflammasome in times of COVID-19. Front Immunol. 2020 Oct 8;11:583373.
  31. - doi: 10.3389/fimmu.2020.583373.
  32. de Rivero Vaccari JP, Dietrich WD, Keane RW. Therapeutics targeting the inflammasome after central nervous system injury. Transl Res. 2016 Jan;167(1):35-45.
  33. - doi: 10.1016/j.trsl.2015.06.003.
  34. de Rivero Vaccari JP, Lotocki G, Alonso OF, Bramlett HM, Dietrich WD, Keane RW. Therapeutic neutralization of the NLRP1 inflammasome reduces the innate immune response and improves histopathology after traumatic brain injury. J Cereb Blood Flow Metab. 2009 Jul;29(7):1251-61.
  35. - doi: 10.1038/jcbfm.2009.46.
  36. de Vasconcelos NM, Lamkanfi M. Recent insights on inflammasomes, gasdermin pores, and pyroptosis. Cold Spring Harb Perspect Biol. 2020 May;12(5):a036392.
  37. - doi: 10.1101/cshperspect.a036392.
  38. de Zoete MR, Palm NW, Zhu S, Flavell RA. Inflammasomes. Cold Spring Harb Perspect Biol. 2014 Dec 1;6(12):a016287.
  39. - doi: 10.1101/cshperspect.a016287.
  40. Dimitriadis E, Menkhorst E, Saito S, Kutteh WH, Brosens JJ. Recurrent pregnancy loss. Nat Rev Dis Primers. 2020 Dec 10;6(1):98.
  41. - doi: 10.1038/s41572-020-00223-7.
  42. Ellul MA, Benjamin L, Singh B, Lant S, Michael BD, Easton A, Kneen R, Defres S, Sejvar J, Solomon T. Neurological associations of COVID-19. Lancet Neurol. 2020 Sep;19(9):767-83. - doi: 10.1016/S1474-4422(20)30221-0
  43. Gameil MA, Marzouk RE, Elsebaie AH, Rozaik SE. Long-term clinical and biochemical residue after COVID-19 recovery. Egypt Liver J. 2021 Sep 12;11(1):74.
  44. - doi: 10.1186/s43066-021-00153-9.
  45. Garg M, Sharma AL, Singh S. Advancement in biosensors for inflammatory biomarkers of SARS-CoV-2 during 2019–2020. Biosens Bioelectron. 2021 Jan 1;171:112703.
  46. - doi: 10.1016/j.bios.2020.112703.
  47. Gautam S, Gollakota AR. Introduction to the special issue "Environmental impacts of COVID-19 pandemic". Gondwana Res. 2023 Feb;114:1.
  48. - doi: 10.1016/j.gr.2022.10.003.
  49. Giamarellos-Bourboulis EJ, Netea MG, Rovina N, Akinosoglou K, Antoniadou A, Antonakos N, Damoraki G, Gkavogianni T, Adami ME, Katsaounou P, Ntaganou M. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe. 2020 Jun 10;27(6):992-1000.
  50. - doi: 10.1016/j.chom.2020.04.009.
  51. Gomez-Lopez N, Romero R, Xu Y, Plazyo O, Unkel R, Leng Y, Than NG, Chaiworapongsa T, Panaitescu B, Dong Z, Tarca AL. A role for the inflammasome in spontaneous preterm labor with acute histologic chorioamnionitis. Reprod Sci. 2017 Oct;24(10):1382-401.
  52. - doi: 10.1177/1933719116687656.
  53. Gotsch F, Romero R, Erez O, Vaisbuch E, Kusanovic JP, Mazaki-Tovi S, Kim SK, Hassan S, Yeo L. The preterm parturition syndrome and its implications for understanding the biology, risk assessment, diagnosis, treatment and prevention of preterm birth. J Matern Fetal Neonatal Med. 2009 Jan 1;22(Suppl 2):5-23.
  54. - doi: 10.1080/14767050902860690.
  55. Grandemange S, Sanchez E, Louis-Plence P, Mau-Them FT, Bessis D, Coubes C, Frouin E, Seyger M, Girard M, Puechberty J, Costes V. A new autoinflammatory and autoimmune syndrome associated with NLRP1 mutations: NAIAD (NLRP1-associated autoinflammation with arthritis and dyskeratosis). Ann Rheum Dis. 2017 Jul;76(7):1191-8.
  56. - doi: 10.1136/annrheumdis-2016-210021.
  57. Jiang L, Tang K, Levin M, Irfan O, Morris SK, Wilson K, Klein JD, Bhutta ZA. COVID-19 and multisystem inflammatory syndrome in children and adolescents. Lancet Infect Dis. 2020 Nov;20(11):e276-88.
  58. - doi: 10.1016/S1473-3099(20)30651-4.
  59. Jiang L, Tang K, Levin M, Irfan O, Morris SK, Wilson K, Klein JD, Bhutta ZA. COVID-19 and multisystem inflammatory syndrome in children and adolescents. Lancet Infect Dis. 2020 Nov;20(11):e276-88.
  60. - doi: 10.1016/S1473-3099(20)30651-4.
  61. Junqueira C, Crespo Â, Ranjbar S, De Lacerda LB, Lewandrowski M, Ingber J, Parry B, Ravid S, Clark S, Schrimpf MR, Ho F. FcγR-mediated SARS-CoV-2 infection of monocytes activates inflammation. Nature. 2022 Jun 16;606(7914):576-84.
  62. - doi: 10.1038/s41586-022-04702-4.
  63. Junqueira C, Crespo Â, Ranjbar S, Lewandrowski M, Ingber J, de Lacerda LB, Parry B, Ravid S, Clark S, Ho F, Vora SM. SARS-CoV-2 infects blood monocytes to activate NLRP3 and AIM2 inflammasomes, pyroptosis and cytokine release. Res Sq [Preprint]. 2021 Aug 11:rs-3.
  64. - doi: 10.21203/rs.3.rs-153628/v1.
  65. Kanneganti TD. The inflammasome: firing up innate immunity. Immunol Rev. 2015 May;265(1):1-5.
  66. - doi: 10.1111/imr.12295.
  67. Kigerl KA, de Rivero Vaccari JP, Dietrich WD, Popovich PG, Keane RW. Pattern recognition receptors and central nervous system repair. Exp Neurol. 2014 Aug;258:5-16.
  68. - doi: 10.1016/j.expneurol.2014.01.001.
  69. Lage SL, Dominical VM, Wong CS, Sereti I. Evaluation of canonical inflammasome activation in human monocytes by imaging flow cytometry. Front Immunol. 2019 Jun 4;10:1284.
  70. - doi: 10.3389/fimmu.2019.01284.
  71. Lee S, Channappanavar R, Kanneganti TD. Coronaviruses: innate immunity, inflammasome activation, inflammatory cell death, and cytokines. Trends Immunol. 2020 Dec;41(12):1083-99. doi: 10.1016/j.it.2020.10.005. - doi: 10.1016/j.it.2020.10.005
  72. Levin M, Holland PC, Nokes TJ, Novelli V, Mola M, Levinsky RJ, Dillon MJ, Barratt TM, Marshall WC. Platelet immune complex interaction in pathogenesis of Kawasaki disease and childhood polyarteritis. BMJ (Clin Res Ed). 1985 May 18;290(6480):1456-60.
  73. - doi: 10.1136/bmj.290.6480.1456.
  74. Levin M. Childhood multisystem inflammatory syndrome—a new challenge in the pandemic. N Engl J Med. 2020 Jul 23;383(4):393-5.
  75. - doi: 10.1056/NEJMe2023158.
  76. Li Y, Huang H, Liu B, Zhang Y, Pan X, Yu XY, Shen Z, Song YH. Inflammasomes as therapeutic targets in human diseases. Signal Transduct Target Ther. 2021 Jul 2;6(1):247.
  77. - doi: 10.1038/s41392-021-00678-4.
  78. Liang L, Yang B, Jiang N, Fu W, He X, Zhou Y, Ma WL, Wang X. Three-month follow-up study of survivors of coronavirus disease 2019 after discharge. J Korean Med Sci. 2020 Dec 7;35(47):e418.
  79. - doi: 10.3346/jkms.2020.35.e418.
  80. Liao B, Liu Z, Tang L, Li L, Gan Q, Shi H, Jiao Q, Guan Y, Xie M, He X, Zhao H. Longitudinal clinical and radiographic evaluation reveals interleukin-6 as an indicator of persistent pulmonary injury in COVID-19. Int J Med Sci. 2021 Jan 1;18(1):29-37.
  81. - doi: 10.7150/ijms.51616.
  82. Lin L, Lu L, Cao W, Li T. Hypothesis for potential pathogenesis of SARS-CoV-2 infection–a review of immune changes in patients with viral pneumonia. Emerg Microbes Infect. 2020 Jan 1;9(1):727-32.
  83. - doi: 10.1080/22221751.2020.1746199.
  84. Lin Y, Zhou HC, Chen N, Ren Y, Gao R, Li Q, Deng Y, Han X, Zhang X, Xiang AP, Guo B. Unveiling the improved targeting migration of mesenchymal stem cells with CXC chemokine receptor 3-modification using intravital NIR-II photoacoustic imaging. J Nanobiotechnol. 2022 Jun 28;20(1):307.
  85. - doi: 10.1186/s12951-022-01472-8.
  86. Lucas C, Wong P, Klein J, Castro TB, Silva J, Sundaram M, Ellingson MK, Mao T, Oh JE, Israelow B, Takahashi T. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature. 2020 Aug 20;584(7821):463-9.
  87. - doi: 10.1038/s41586-020-2588-y.
  88. Man SM, Karki R, Kanneganti TD. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev. 2017 May;277(1):61-75.
  89. - doi: 10.1111/imr.12534.
  90. Menikou S, Langford PR, Levin M. Kawasaki disease: the role of immune complexes revisited. Front Immunol. 2019 Jun 12;10:1156.
  91. - doi: 10.3389/fimmu.2019.01156.
  92. Morris SB. Case series of multisystem inflammatory syndrome in adults associated with SARS-CoV-2 infection—United Kingdom and United States, March–August 2020. MMWR Morb Mortal Wkly Rep. 2020;69:1450-6.
  93. - doi: 10.15585/mmwr.mm6940e1.
  94. Noreen N, Dil S, Niazi SU, Naveed I, Khan NU, Khan FK, Tabbasum S, Kumar D. COVID-19 pandemic & Pakistan; limitations and gaps. Global Biosecurity. 2020 May 21;2:1-10.
  95. - doi: 10.31646/gbio.40.
  96. Nune A, Durkowski V, Pillay SS, Barman B, Elwell H, Bora K, Bilgrami S, Mahmood S, Babajan N, Venkatachalam S, et al. New-onset rheumatic immune-mediated inflammatory diseases following SARS-CoV-2 vaccinations until May 2023: a systematic review. Vaccines. 2023 Oct 8;11(10):1571.
  97. - doi: 10.3390/vaccines11101571.
  98. Ozaki E, Campbell M, Doyle SL. Targeting the NLRP3 inflammasome in chronic inflammatory diseases: current perspectives. J Inflamm Res. 2015 Jan 16;8:15-27.
  99. - doi: 10.2147/JIR.S51250.
  100. Paediatrics RC, Health C. Guidance—Paediatric Multisystem Inflammatory Syndrome Temporally Associated with COVID-19 [Internet]. 2020 [cited 2025 Aug 27].
  101. - Available:https://www.rcpch.ac.uk/resources/guidance-paediatric-multisystem-inflammatory-syndrome-temporally-associated-covid-19
  102. Pirzada RH, Javaid N, Choi S. The roles of the NLRP3 inflammasome in neurodegenerative and metabolic diseases and in relevant advanced therapeutic interventions. Genes. 2020 Jan 27;11(2):131.
  103. -
  104. Plebani M, Laposata M, Lippi G. A manifesto for the future of laboratory medicine professionals. Clin Chim Acta. 2019 Feb 1;489:49-52.
  105. - doi: 10.1016/j.cca.2018.11.037.
  106. Ponti G, Maccaferri M, Ruini C, Tomasi A, Ozben T. Biomarkers associated with COVID-19 disease progression. Crit Rev Clin Lab Sci. 2020 Aug 17;57(6):389-99.
  107. - doi: 10.1080/10408363.2020.1770685.
  108. Raman B, Cassar MP, Tunnicliffe EM, Filippini N, Griffanti L, Alfaro-Almagro F, Okell T, Sheerin F, Xie C, Mahmod M, Mózes FE. Medium-term effects of SARS-CoV-2 infection on multiple vital organs, exercise capacity, cognition, quality of life and mental health, post-hospital discharge. EClinicalMedicine. 2021 Jan;31:100683.
  109. - doi: 10.1016/j.eclinm.2020.100683.
  110. Ramos-Casals M, Brito-Zerón P, Mariette X. Systemic and organ-specific immune-related manifestations of COVID-19. Nat Rev Rheumatol. 2021 Jun;17(6):315-32.
  111. - doi: 10.1038/s41584-021-00608-z.
  112. Riphagen S, Gomez X, Gonzalez-Martinez C, Wilkinson N, Theocharis P. Hyperinflammatory shock in children during COVID-19 pandemic. Lancet. 2020 May 23;395(10237):1607-8.
  113. - doi: 10.1016/S0140-6736(20)31094-1.
  114. Rodrigues TS, de Sá KS, Ishimoto AY, Becerra A, Oliveira S, Almeida L, Gonçalves AV, Perucello DB, Andrade WA, Castro R, Veras FP. Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients. J Exp Med. 2020 Nov 24;218(3):e20201707.
  115. - doi: 10.1084/jem.20201707.
  116. Romero R, Mazor M, Munoz H, Gomez R, Galasso M, Sherer DM. The preterm labor syndrome. Ann N Y Acad Sci. 1994 Sep 1;734:414-29.
  117. - doi: 10.1111/j.1749-6632.1994.tb21786.x.
  118. Sadiq M, Aziz OA, Kazmi U, Hyder N, Sarwar M, Sultana N, Bari A, Rashid J. Multisystem inflammatory syndrome associated with COVID-19 in children in Pakistan. Lancet Child Adolesc Health. 2020 Oct;4(10):e36-7. doi: 10.1016/S2352-4642(20)30221-1.
  119. - doi: 10.1016/S2352-4642(20)30221-1.
  120. Samsudin I, Vasikaran SD. Clinical utility and measurement of procalcitonin. Clin Biochem Rev. 2017 Apr;38(2):59-68.
  121. -
  122. Sefik E, Qu R, Junqueira C, Kaffe E, Mirza H, Zhao J, Brewer JR, Han A, Steach HR, Israelow B, Blackburn HN. Inflammasome activation in infected macrophages drives COVID-19 pathology. Nature. 2022 Jun 16;606(7914):585-93.
  123. . - doi: 10.1038/s41586-022-04702-5.
  124. Sharma D, Kanneganti TD. The cell biology of inflammasomes: mechanisms of inflammasome activation and regulation. J Cell Biol. 2016 Jun 20;213(6):617-29. .
  125. - doi: 10.1083/jcb.201602089
  126. Shawe J, Delbaere I, Ekstrand M, Hegaard HK, Larsson M, Mastroiacovo P, Stern J, Steegers E, Stephenson J, Tydén T. Preconception care policy, guidelines, recommendations and services across six European countries: Belgium (Flanders), Denmark, Italy, the Netherlands, Sweden and the United Kingdom. Eur J Contracept Reprod Health Care. 2015 Mar;20(2):77-87.
  127. - doi: 10.3109/13625187.2014.1003479.
  128. Shim E. Regional variability in COVID-19 case fatality rate in Canada, February–December 2020. Int J Environ Res Public Health. 2021 Feb;18(4):1839.
  129. - doi: 10.3390/ijerph18041839.
  130. Sugimoto MA, Vago JP, Perretti M, Teixeira MM. Mediators of the resolution of the inflammatory response. Trends Immunol. 2019 Mar;40(3):212-27.
  131. - doi: 10.1016/j.it.2019.01.007.
  132. Sun Y, Lu Y, Saredy J, Wang X, Drummer IV C, Shao Y, Saaoud F, Xu K, Liu M, Yang WY, Jiang X. ROS systems are a new integrated network for sensing homeostasis and alarming stresses in organelle metabolic processes. Redox Biol. 2020 Oct;37:101696 - . doi: 10.1016/j.redox.2020.101696.
  133. Swanson KV, Deng M, Ting JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019 Aug;19(8):477-89.
  134. - doi: 10.1038/s41577-019-0165-0.
  135. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020 Apr;18(4):844-7.
  136. - doi: 10.1111/jth.14768.
  137. To T, Viegi G, Cruz A, Taborda-Barata L, Asher I, Behera D, Bennoor K, Boulet LP, Bousquet J, Camargos P, Conceicao C. A global respiratory perspective on the COVID-19 pandemic: commentary and action proposals. Eur Respir J. 2020 Jul 23;56(1):2001704.
  138. - doi: 10.1183/13993003.01704-2020.
  139. Uresti-Rivera EE, García-Hernández MH. Potential role of AIM2 inflammasome in SARS-CoV-2 infection. Scand J Immunol. 2023 Feb;97(2):e13239.
  140. - doi: 10.1111/sji.13239.
  141. Vandanmagsar B, Youm YH, Ravussin A, Galgani JE, Stadler K, Mynatt RL, Ravussin E, Stephens JM, Dixit VD. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med. 2011 Feb;17(2):179-88.
  142. - doi: 10.1038/nm.2279.
  143. Yang J, Wang M, Li M, Zhou J, Zhang KY, Liu S, Zhao Q. Fluorescent/phosphorescent dual-emissive probe for simultaneous and independent sensing of intracellular hypochlorite and pH via time-resolved luminescence imaging. Chem Biomed Imaging. 2023 Jun 18;1(9):864-70.
  144. - doi: 10.1021/cbi.3c00025.
  145. Yasuhara J, Watanabe K, Takagi H, Sumitomo N, Kuno T. COVID-19 and multisystem inflammatory syndrome in children: a systematic review and meta-analysis. Pediatr Pulmonol. 2021 May;56(5):837-48.
  146. - doi: 10.1002/ppul.25205.
  147. Zhao N, Di B, Xu LL. The NLRP3 inflammasome and COVID-19: activation, pathogenesis and therapeutic strategies. Cytokine Growth Factor Rev. 2021 Oct;61:2-15.
  148. -

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Palakkattu Veetil A., Nallusamy D., Rajendran G., Senthamarai S., Mullukalayil Joseph S., Krishnan P., Nellikuzhimalayil Parameswaran N., Jose J., Roy Divakaran D.,

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № 77 - 11525 от 04.01.2002.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах