STATISTICALLY SIGNIFICANT T-CELL POPULATIONS DURING DIAGNOSIS OF SCATTERED SCLEROSIS

Cover Page


Cite item

Full Text

Abstract

To search for statistically signifi cant T-cell populations in the diagnosis of multiple sclerosis (MS). The analysis of the absolute content of various subpopulations of T-lymphocytes (T-helpers (Th) and cytotoxic T-cells (Tcyt)) in the peripheral blood of 61 healthy volunteers and 47 patients with MS was carried out using multi-color fl ow cytometry. Based on the expression of diff erentiation markers (CD45RA, CD62L, CD27 and CD28) and eff ector molecules (CD56 and CD57), Th and Tcyt were divided into main populations at diff erent stages of maturation. The following statistically signifi cant populations of T-cells were identifi ed: CD56CD57+ T-lymphocytes, Em Th, EM3 Tcyt, CD56+CD57 T-lymphocytes, EM2 Tcyt. The signifi cance of these populations was also confi rmed in the calculation of Chi-square statistics. Based on the information received, three groups of T-cell populations were selected. A model for the diagnosis of multiple sclerosis based on the algorithm of K nearest neighbors was built on each group of populations. The accuracy of prediction of the constructed models varies in the range of 0.69–0.90. 

About the authors

Y. V. Kozichuk

IFMO University

Email: fake@neicon.ru

graduated student, Faculty of Control Systems and Robotics,

St. Petersburg

Russian Federation

A. G. Ilves

N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences (IHB RAS)

Email: fake@neicon.ru

senior researcher, laboratory of neuroimmunology,

St. Petersburg

Russian Federation

I. V. Kudryavtsev

Institute of Experimental Medicine (FSBSI “IEM”)

Author for correspondence.
Email: igorek1981@yandex.ru

PhD, senior researcher, department of immunology,

197376, St. Petersburg, acad. Pavlov str., 12

Russian Federation

D. A. Moskalenko

IFMO University

Email: fake@neicon.ru

graduated student, Faculty of Technological Management and Innovations,

St. Petersburg

Russian Federation

O. M. Novoselova

N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences (IHB RAS)

Email: fake@neicon.ru

junior researcher, laboratory of neurorehabilitation,

St. Petersburg

Russian Federation

K. S. Rubanik

N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences (IHB RAS)

Email: fake@neicon.ru

junior researcher, laboratory of neurorehabilitation,

St. Petersburg

Russian Federation

M. K. Serebryakova

Institute of Experimental Medicine (FSBSI “IEM”)

Email: fake@neicon.ru

Research Associate, department of immunology,

St. Petersburg

Russian Federation

D. O. Starov

IFMO University

Email: fake@neicon.ru

graduated student, Faculty of Control Systems and Robotics,

St. Petersburg

Russian Federation

B. A. Timchenko

IFMO University

Email: fake@neicon.ru

graduated student, Faculty of Control Systems and Robotics,

St. Petersburg

Russian Federation

L. N. Prakhova

N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences (IHB RAS)

Email: fake@neicon.ru

MD, Head of the laboratory of neurorehabilitation,

St. Petersburg

Russian Federation

I. S. Lobanov

IFMO University

Email: fake@neicon.ru

PhD (Physics and Mathematics), docent, Department of Control Systems and Robotics,

St. Petersburg

Russian Federation

References

  1. Злокачественные новообразования в России в 2016 году (заболеваемость и смертность), под редакцией А. Д. Каприна, В. В. Старинского, Г. В. Петровой, 2018. Malignant neoplasms in Russia in 2016 (morbidity and mortality). Kaprin A. D., Starinsky V. V., Petrov G.V (eds), 2018.
  2. ЮНЭЙДС. Информационный бюллетень, 2017. URL http://www.unaids.org/sites/default/files/media_asset/UNAIDS_FactSheet_ru.pdf
  3. Poplin R., Varadarajan A. V., Blumer K., Liu Y., McConnell M. V., Corrado G. S., Peng L., Webster D. R. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nature Biomedical Engineering 2018, 2, 158–164.
  4. Rajpurkar P., Irvin J., Zhu K., Yang B., Mehta H., Duan T., Ding D., Bagul A., Langlotz C., Shpanskaya K., Lungren M. P., Ng A. Y. CheXNet: RadiologistLevel Pneumonia Detection on Chest X-Rays with Deep Learning. Arxiv preprints, 2017.
  5. Krusekopf S., Lücke J., Thilo Figge M. Automated detection of circulating tumor cells with naive Bayesian classifiers. Cytometry A 2014, 85, 501–511.
  6. Шмидт Т. Е., Яхно Н. Н. Рассеянный склероз: руководство для врачей. МЕДпресс-информ, М., 2016, 272. [Schmidt T. E., Jahno N. N. Multiple sclerosis: a guide for doctors. MEDpress-inform, Moscow, 2016, 272.
  7. Atlas of MS2013. URL: http://www.msif.org/wp-content/uploads/2014/09/Atlas-of-MS.pdf
  8. Raman K. M. T. Simulation of Spread and Control of Lesions in Brain. Computational and Mathematical Methods in Medicine 2012, Article ID383546, 6 pages.
  9. Zhao Y., Healy B. C., Rotstein D., Guttmann C. R., Bakshi R., Weiner H. L., Brodley C. E., Chitnis T. Exploration of machine learning techniques in predicting multiple sclerosis disease course. PLoS One 2017, 12(4), e0174866.
  10. Ion-Mărgineanu A., Kocevar G., Stamile C., Sima D. M., Durand-Dubief F., Van Huffel S., Sappey-Marinier D. Machine Learning Approach for Classifying Multiple Sclerosis Courses by Combining Clinical Data with Lesion Loads and Magnetic Resonance Metabolic Features. Front Neurosci 2017, 11, 398.
  11. Kiiski H., Jollans L., Donnchadha S. Ó., Nolan H., Lonergan R., Kelly S., O’Brien M. C., Kinsella K., Bramham J., Burke T., Hutchinson M., Tubridy N., Reilly R. B., Whelan R. Machine Learning EEG to Predict Cognitive Functioning and Processing Speed Over a 2-Year Period in Multiple Sclerosis Patients and Controls. Brain Topogr 2018, 31, 346–363.
  12. Wottschel V., Alexander D., Kwok P. P., Chard D. T., Stromillo M. L., De Stefano N, Thompson A. J., Miller D. H., Ciccarelli O. Predicting outcome in clinically isolated syndrome using machine learning. NeuroImage Clinical 2015, 7, 281–287.
  13. Bendfeldt K., Klöppel S, Nichols T. E., Smieskova R., Kuster P., Traud S., Mueller-Lenke N., Naegelin Y., Kappos L., Radue E. W., Borgwardt S. J. Multivariate pattern classifi cation of gray matter pathology in multiple sclerosis. NeuroImage, 2012, 60, 400–408.
  14. Eshaghi A., Wottschel V., Cortese R., Calabrese M., Sahraian M. A., Thompson A. J., Alexander D. C., Ciccarelli O. Gray matter MRI differentiates neuromyelitis optica from multiple sclerosis using random forest. Neurology 2016, 87, 2463–2470.
  15. Eshaghi A., Wottschel V., Cortese R., Calabrese M., Sahraian M. A., Thompson A. J., Alexander D. C., Ciccarelli O. Graph Theory-Based Brain Connectivity for Automatic Classifi cation of Multiple Sclerosis Clinical Courses. Front Neurosci 2016, 10, 478.
  16. Polman C. H., Reingold S. C., Banwell B., Clanet M., Cohen J. A., Filippi M., Fujihara K., Havrdova E., Hutchinson M., Kappos L., Lublin F. D., Montalban X., O’Connor P., Sandberg-Wollheim M., Thompson A. J., Waubant E., Weinshenker B., Wolinsky J. S. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 2011, 69, 292–302.
  17. Kurtzke J. F. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 1983, 33, 1444–1452, Kappos L. Slightly modified, version 09/08.
  18. Кудрявцев И. В., Борисов А. Г., Кробинец И. И., Савченко А. А., Серебрякова М. К. Определение основных субпопуляций цитотоксических Т-лим фо цитов методом многоцветной проточной цитометрии. Медицинская иммунология 2015, 17(6), 525–538.
  19. Machine Learning, Neural and Statistical Classifi cation. Michie D., Spiegelhalter D. J., Taylor C. C. (eds). Overseas Press, 1994, 290.
  20. Kohav R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the Fourteenth International Joint Conference on Artifi cial Intelligence. Kaufmann M. (ed), San Mateo, CA 1995, 1137–1143.
  21. Bergstra J., Bengi Y. Random search for hyper-parameter optimization. The Journal of Machine Learning Research 2012, 13, 281–305.
  22. Focosi D., Bestagno M., Burrone O., Petrini M. CD57+ T lymphocytes and functional immune defi ciency. J Leukoc Biol 2010, 87(1), 107–116.
  23. Chattopadhyay P. K., Betts M. R., Price D. A., Gostick E., Horton H., Roederer M., De Rosa S. C. The cytolytic enzymes granyzme A, granzyme B, and perforin: expression patterns, cell distribution, and their relationship to cell maturity and bright CD57 expression. J Leukoc Biol 2009, 85(1), 88–97.
  24. Le Priol Y., Puthier D., Lecureuil C., Combadiere C., Debre P., Nguyen C., Combadiere B. High cytotoxic and specifi c migratory potencies of senescent CD8+ CD57+ cells in HIV-infected and uninfected individuals. J Immunol 2006, 177(8), 5145–5154.
  25. Okada R., Kondo T., Matsuki F., Takata H., Takiguchi M. Phenotypic classifi cation of human CD4+ T cell subsets and their differentiation. Int Immunol 2008, 20(9), 1189–1199.
  26. Mahnke Y. D., Brodie T. M., Sallusto F., Roederer M., Lugli E. The who’s who of T-cell differentiation: human memory T-cell subsets. Eur J Immunol 2013, 43(11), 2797–2809.
  27. Acosta-Rodriguez E.V., Rivino L., Geginat J., Jarrossay D., Gattorno M., Lanzavecchia A., Sallusto F., Napolitani G. Surface phenotype and antigenic specifi city of human interleukin 17-producing T helper memory cells. Nat Immunol, 2007, 8(6), 639–646.
  28. Rovaris M., Barnes D., Woodrofe N., du Boulay G. H., Thorpe J. W., Thompson A. J., McDonald W.I., Miller D. H. Patterns of disease activity in multiple sclerosis patients: a study with quantitative gadoliniumenhanced brain MRI and cytokine measurement in different clinical subgroups. J Neurol 1996, 243(7), 536–542.
  29. Kebir H., Ifergan I., Alvarez J. I., Bernard M., Poirier J., Arbour N., Duquette P., Prat A. Preferential recruitment of interferon-gamma-expressing TH17 cells in multiple sclerosis. Ann Neurol 2009, 66(3), 390–402.
  30. Shajarian M., Alsahebfosoul F., Etemadifar M., Sedaghat N., Shahbazi M., Firouzabadi F. P., Dezashibi H. M. IL-23 plasma level measurement in relapsing remitting multiple sclerosis (RRMS) patients compared to healthy subjects. Immunol Invest 2015, 44(1), 36–44.
  31. Babaloo Z., Aliparasti M. R., Babaiea F., Almasi S., Baradaran B., Farhoudi M. The role of Th17 cells in patients with relapsing-remitting multiple sclerosis: interleukin-17A and interleukin-17F serum levels. Immunol Lett 2015, 164(2), 76–80.
  32. Кудрявцев И. В., Ильвес А. Г., Борисов А. Г., Минеев К. К., Петров А. М., Савченко А. А., Серебрякова М. К., Столяров И. Д. CCR6-позитивные Т-хелпе ры периферической крови при рассеянном склерозе. Цитокины и воспаление 2016, 15(2), 166–172.
  33. Romero P., Zippelius A., Kurth I., Pittet M. J., Touvrey C., Iancu E. M., Corthesy P., Devevre E., Speiser D. E., Rufer N. Four functionally distinct populations of human effector-memory CD8+ T lymphocytes. J Immunol 2007, 178(7), 4112–4119.
  34. Rufer N., Zippelius A., Batard P., Pittet M. J., Kurth I., Corthesy P., Cerottini J. C., Leyvraz S., Roosnek E., Nabholz M., Romero P. Ex vivo characterization of human CD8+ T subsets with distinct replicative history and partial effector functions. Blood 2003, 102(5), 1779–1787.
  35. Romero P., Zippelius A., Kurth I., Pittet M. J., Touvrey C., Iancu E. M., Corthesy P., Devevre E., Speiser D. E., Rufer N. Four functionally distinct populations of human effector-memory CD8+ T lymphocytes. J Immunol 2007, 178(7), 4112–4119.
  36. Кудрявцев И. В., Ильвес А. Г., Кробинец И. И., Минеев К. К., Серебрякова М. К., Петров А. М., Столяров И. Д. Субпопуляционный состав Т-хел пе ров и цитотоксических Т-лимфоцитов периферической крови при рассеянном склерозе. Цитокины и воспаление 2016. 15, 1. 91–99.
  37. Mikulkova Z., Praksova P., Stourac P., Bednarik J., Michalek J. Imbalance in T-cell and cytokine profi les in patients with relapsing-remitting multiple sclerosis. J Neurol Sci 2011, 300(1–2), 135–141.
  38. Haegele K. F., Stueckle C. A., Malin J. P., Sindern E. Increase of CD8+ T-effector memory cells in peripheral blood of patients with relapsing-remitting multiple sclerosis compared to healthy controls. J Neuroimmunol 2007, 183(1–2), 168–174.
  39. Liu G. Z., Fang L. B., Hjelmström P., Gao X. G. Increased CD8+ central memory T cells in patients with multiple sclerosis. Mult Scler 2007, 13(2), 149–155.
  40. Pender M. P., Csurhes P. A., Pfluger C. M., Burrows S. R. Deficiency of CD8+ effector-memory T cells is an early and persistent feature of multiple sclerosis. Mult Scler 2014, 20(14), 1825–1832.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Kozichuk Y.V., Ilves A.G., Kudryavtsev I.V., Moskalenko D.A., Novoselova O.M., Rubanik K.S., Serebryakova M.K., Starov D.O., Timchenko B.A., Prakhova L.N., Lobanov I.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № 77 - 11525 от 04.01.2002.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies