IMMUNOTHERAPY FOR CHILDREN WITH MALIGNANT BRAIN TUMORS



Cite item

Full Text

Abstract

Abstract

Background. The incidence of high-grade malignant gliomas (MG) ranges from 35 to 46% of all central nervous system tumors. Despite combined therapy including surgery, radiation and chemotherapy overall five-year survival does not exceed 10%. The emergence of novel immunotherapeutic strategies has cultivated a renewed optimism for the treatment of MG.

Aim. Improving the survival rate of patients with gliomas.

Materials and methods. Our study included 5 patients, median age 7,6 years (2-16). Three pts had anaplastic astrocytoma (AA) (1st recurrence – 1 pt, 2nd recurrence – 2 pts), 1 pt had glioblastoma multiforme (GBM) (3rd recurrence) and 1 pt had diffuse brainstem glioma (BSG). The median time to the first relapse was 12 months (4 to 16), to the second one– 5 months (1 to 8). The protocol of immunotherapy included combined administration of autologous dendritic cell-based vaccine (DV) and repeated intrathecal/intraventricular injections of donor allogenic immunocompetent cells (alloIC) for at least 2 years.

Results. Two of 3 pts with AA experienced a progression-free interval of 67 and 71 months One pt. with 3rd GBM relapse is alive without any therapy 13.3 years after immunotherapy start. The median time of follow-up was 67 months with the 2-years overall survival was 58%. Two pts died from disease progression within 6 and 7 months from the start of immunotherapy. Over the period of treatment the pts received a median of 20 (8 to 60) alloIC injections and 18 (8 to 44) DV administrations. No serious side-effect was observed.

Conclusion. Immunotherapy could be an attractive option for treating patients with high-grade malignant gliomas irresponsible to conventional therapy and is worthy of further investigation.

About the authors

Igor Stanislavovich Dolgopolov

Tver State Medical University, 170100, Tver, Russian Federation;
Children's Regional Clinical Hospital, 170100, Tver, Russian Federation

Email: irdolg@rambler.ru
ORCID iD: 0000-0001-9777-1220

Head of the Department of Pediatrics, Pediatric Faculty, Tver State Medical University

Russian Federation, Tver State Medical University, 170100, Tver, Russian Federation; Children's Regional Clinical Hospital, 170100, Tver, Russian Federation

Maxim Yurievich Rykov

Russian State Social University, 129226, Moscow, Russian Federation

Author for correspondence.
Email: wordex2006@rambler.ru
ORCID iD: 0000-0002-8398-7001

Doctor of Medical Sciences, Associate Professor, Head of the Department of Pediatric, Russian State Social University

Russian Federation, Russian State Social University, 129226, Moscow, Russian Federation

References

  1. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al.The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016 Jun; 131(6):803-20.
  2. Thakkar JP, Dolecek TA, Horbinski C, Ostrom QT, Lightner DD, Barnholtz-Sloan JS, Villano JL. Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol Biomarkers Prev. 2014 Oct; 23(10):1985-96.
  3. Stummer W, Reulen HJ, Meinel T, Pichlmeier U, Schumacher W, Tonn JC, et al., ALA-Glioma Study Group. Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery. 2008 Mar; 62(3):564-76; discussion 564-76.
  4. Cui Y, Tha KK, Terasaka S, Yamaguchi S, Wang J, Kudo K, et al. Prognostic Imaging Biomarkers in Glioblastoma: Development and Independent Validation on the Basis of Multiregion and Quantitative Analysis of MR Images. Radiology. 2016 Feb; 278(2):546-53.
  5. Ellingson BM. Radiogenomics and imaging phenotypes in glioblastoma: novel observations and correlation with molecular characteristics. Curr Neurol Neurosci Rep. 2015 Jan; 15(1):506.
  6. Hanif F, Muzaffar K, Perveen K, Malhi SM, Simjee ShU. Glioblastoma Multiforme: A Review of its Epidemiology and Pathogenesis through Clinical Presentation and Treatment. Asian Pac J Cancer Prev. 2017 Jan 1; 18(1):3-9.
  7. Witthayanuwat S, Pesee M, Supaadirek C, Supakalin N, Thamronganantasakul K, Krusun S. Survival Analysis of Glioblastoma Multiforme. Asian Pac J Cancer Prev. 2018; 19(9): 2613–2617.
  8. Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005; 352:987–96.
  9. Ostrom QT, Cioffi G, Gittleman H, Patil N, Waite K, Kruchko C, Barnholtz-Sloan JS. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012-2016. Neuro Oncol. 2019 Nov 1; 21(Suppl 5):v1-v100.
  10. Auffinger B, Thaci B, Nigam P, Rincon E, Yu Cheng, Lesniak M. New therapeutic approaches for malignant glioma: in search of the Rosetta stone. F1000 Med Rep 2012, 4:18.
  11. Rolle C, Sengupta S, Lesniak M. Challenges in clinical design of immunotherapy trials for malignant glioma. Neurosurg Clin N Am. 2010, 21(1): 201–14.
  12. Chung D, Shin H, Hong Y. A New Hope in immunotherapy for malignant gliomas: adoptive T cell transfer therapy. J Immunol Res. 2014; 2014: 326545.
  13. Kang X, Zheng Y, Hong W, Chen X, Li H, Huang B, Huang Z, Tang H, Geng W. Recent advances in immune cell therapy for glioblastoma. Front Immunol. 2020 Oct 21; 11:544563.
  14. Eagles M, Nassiri F, Badhiwala J, Suppiah S, Almenawer S, Zadeh G, Aldape K. Dendritic cell vaccines for high-grade gliomas. Ther Clin Risk Manag. 2018; 14: 1299–1313.
  15. Pellegatta S, Eoli M, Cuccarini V, Anghileri E, Pollo B, Pessina S, Et al. Survival gain in glioblastoma patients treated with dendritic cell immunotherapy is associated with increased NK but not CD8+ T cell activation in the presence of adjuvant temozolomide. Oncoimmunology. 2018; 7(4): e1412901.
  16. Чкадуа Г.З, Борунова А.А., Шоуа И.Б, Долгополов И.С, Пименов Р.И, Михайлова И.Н, и соавт. Криоконсервация дендритных клеток человека для клинического применения. Российский биотерапевтический журнал 2019, 4 (18) ; 65-75.
  17. Чкадуа Г.З., Заботина Т.Н., Буркова A.A. Адаптирование методики культивирования дендритных клеток человека из моноцитов периферической крови для клинического применения Российский биотерапевтический журнал 2002, 1(3); 56-59.
  18. Lillehei KO, Mitchell DH, Johnson SD, McCleary EL, Kruse CA. Long-term follow-up of patients with recurrent malignant gliomas treated with adjuvant adoptive immunotherapy. Neurosurgery. 1991, 28(1):16-23.
  19. Hayes RL, Koslow M, Hiesiger EM, et al. Improved long-term survival after intracavitary interleukin-2 and lymphokine-activated killer cells for adults with recurrent malignant glioma. J Cancer. 1995; 76(5):840-52.
  20. Han SJ, Zygourakis C, Lim M, Parsa AT. Immunotherapy for glioma: promises and challenges. Neurosurg Clin N Am. 2012, 23(3):357-70.
  21. Ardon H, Van Gool SW, Verschuere T, et al. Integration of autologous dendritic cell-based immunotherapy in the standard of care treatment for patients with newly diagnosed glioblastoma: results of the HGG-2006 phase I/II trial. Cancer Immunol Immunother. 2012, 61(11): 2033-44.
  22. Liau LM, Ashkan K, Tran DD, Campian JL, Trusheim JE, Cobbs CS, et al. First results on survival from a large Phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. J Transl Med. 2018 May 29;16(1):142.
  23. Frederico SC, Hancock JC, Brettschneider EES, Ratnam NM, Gilbert MR, Terabe M. Making a Cold Tumor Hot: The Role of Vaccines in the Treatment of Glioblastoma. Front Oncol. 2021 May 10; 11:672508.
  24. Poon С, Sarkar S, Yong V, Kelly J. Glioblastoma-associated microglia and macrophages: targets for therapies to improve prognosis. Brain, 2017 Jun 1;140(6):1548-1560.
  25. Jordan JT, Sun W, Hussain SF, DeAngulo G, Prabhu SS, Heimberger AB. Preferential migration of regulatory T cells mediated by glioma-secreted chemokines can be blocked with chemotherapy. Cancer Immunol Immunother. 2008 Jan; 57(1):123-31.
  26. Zagzag D, Salnikow K, Chiriboga L, Yee H, Lan L, Ali MA, et al. Downregulation of major histocompatibility complex antigens in invading glioma cells: stealth invasion of the brain. Lab Invest. 2005 Mar; 85(3):328-41.
  27. Almuhaisen G, Alhalaseh Y, Mansour R, Abu-Shanab A, Al-Ghnimat S, Al-Hussaini M. Frequency of mismatch repair protein deficiency and PD-L1 in high-grade gliomas in adolescents and young adults (AYA). Brain Tumor Pathol, 2021 Jan;38(1):14-22.
  28. Wheeler CJ, Black KL, Liu G, Mazer M, Zhang XX, Pepkowitz S, et al.Vaccination elicits correlated immune and clinical responses in glioblastoma multiforme patients. Cancer Res. 2008 Jul 15; 68(14):5955-64.
  29. Yamanaka R., Homma J., Yajima N., Tsuchiya N., Sano M., Kobayashi T., et al. Clinical evaluation of dendritic cell vaccination for patients with recurrent glioma: Results of a clinical phase I/II trial. Clin. Cancer Res. 2005; 11:4160–4167.
  30. Vik-Mo EO, Nyakas M, Mikkelsen BV, Moe MC, Due-Tønnesen P, Suso EM, et al. Therapeutic vaccination against autologous cancer stem cells with mRNA-transfected dendritic cells in patients with glioblastoma. Cancer Immunol Immunother. 2013 Sep; 62(9):1499-509.
  31. Ruggeri L, Capanni M, Urbani F, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 2002, 295; 2097–2100.
  32. Willem C, Makanga DR, Guillaume T, Maniangou B, Legrand N, Gagne K, et al. Impact of KIR/HLA Incompatibilities on NK Cell Reconstitution and Clinical Outcome after T Cell-Replete Haploidentical Hematopoietic Stem Cell Transplantation with Posttransplant Cyclophosphamide. J Immunol. 2019 Apr 1;202(7):2141-2152.
  33. Jacobs SK, Wilson DJ, Kornblith PL, Grimm EA. Interleukin-2 or autologous lymphokine-activated killer cell treatment of malignant glioma: phase I trial. Cancer Res. 1986 46:2101–04.
  34. Kitahara T, Watanabe O, Yamaura A, et al. Establishment of interleukin 2 dependent cytotoxic T lymphocyte cell line specific for autologous brain tumor and its intracranial administration for therapy of the tumor. J Neurooncol 1987;4(4):329–36.
  35. Quattrocchi KB, Miller CH, Cush S, et al. Pilot study of local autologous tumor infiltrating lymphocytes for the treatment of recurrent malignant gliomas. J Neurooncol 1999;45(2):141–157.
  36. Zakerinia M, Kamgarpour A, Nemati H, Zare H, Ghasemfar M, Rezvani A, Karimi M, et al. Intrathecal autologous bone marrow-derived hematopoietic stem cell therapy in neurological diseases. Int J Organ Transplant Med. 2018; 9(4): 157–167.
  37. Meuleman N, Ahmad I, Duvillier H, et al. Intrathecal donor lymphocyte infusion for the treatment of suspected refractory lymphomatous meningitis: a case report. Eur J Haematol 2006: 77: 523–26.
  38. Neumann M, Blaw IW, Burmeister T, et al. Intrathecal application of donor lymphocytes in leukemic meningeosis after allogeneic stem cell transplantation. Ann Hematol 2011, 90 (8): 911-6.
  39. Kmiecik J, Zimmer J, Chekenya M. Natural killer cells in intracranial neoplasms: presence and therapeutic efficacy against brain tumours. J Neurooncol, 2014, 116:1-9

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Dolgopolov I.S., Rykov M.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № 77 - 11525 от 04.01.2002.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies