LYMPHOCYTE SUBSETS IN EPICARDIAL, THYMIC AND SUBCUTANEOUS ADIPOSE TISSUE DURING ADVANCED CORONARY ATHEROSCLEROSIS IN PATIENTS WITH CORONARY ARTERY DISEASE



Cite item

Full Text

Abstract

The important role of epicardial (EAT) and thymic (TAT) adipose tissue in the development of atherosclerosis in patients with coronary artery disease (CAD) is widely discussed. The purpose of the study was to investigate the lymphocytes subsets and FoxP3+ Treg lymphocytes in epicardial, thymic and subcutaneous adipose tissue depending on the severity of coronary atherosclerosis in patients with chronic CAD. We examined 24 patients with CAD (21 men; mean age 65.0 (58.0; 68.0) years) scheduled for open-heart surgery. In samples of EAT, TAT and subcutaneous adipose tissue (SAT), the content of CD4+, CD8+, B-lymphocytes, NK- and NKT-cells, CD4+CD25hiFoxP3+ and CD4+CD25lowFoxP3+ T regulatory lymphocytes (Treg) and a proportion of Tregs with FoxP3 nuclear translocation was determined by imaging flow cytometry. Depending on the severity of atherosclerosis, assessed according to Gensini Score, patients were divided into groups: group 1 – patients with Gensini Score<65; group 2 – patients with Gensini Score≥65. Patients in group 2 had higher frequency of EAT CD4+CD25lowTreg with FoxP3nuclear translocation, TAT CD8+ T lymphocytes and NK cells, a lower content of TAT double positive CD4+CD8+ T lymphocytes, and a tendency towards a decrease of frequency of TAT CD4+CD25hiTreg with FoxP3 nuclear translocation compared to patients in group 1. The level of nuclear translocation of FoxP3 in CD4+CD25hiTreg cells in TAT was inversely related to the proportion of CD8+ T lymphocytes (rs=-0.653; p=0.012) and NK cells (rs=-0.723; p=0.003) in TAT, and directly – to the proportion of double positive CD4+CD8+ T-lymphocytes in TAT (rs=0.567; p=0.034) and the value of the waist-to-hip ratio (rs =-0.474; p=0.041). Further research is required to study the molecular mechanisms of these relationships in patients with coronary atherosclerosis and chronic coronary artery disease.

Full Text

Введение

В настоящее время важная роль жировой ткани в регуляции метаболизма, процессов репродукции, иммунорегуляции и увеличения риска сердечно-сосудистых заболеваний является общепризнанной. Кроме того, установлено, что свойства различных жировых депо разнятся, как по характеристикам адипоцитов, основных клеточных элементов жировой ткани, так и по составу клеток стромально-сосудистой фракции жировой ткани, которые очень тесно взаимодействуют с адипоцитами [4].

Отличительной чертой висцеральной жировой ткани является значительная доля в ней FoxP3+ Т-регуляторных (Treg)-лимфоцитов, которые в норме могут составлять до 50% от всех CD4+ Т-лимфоцитов [15]. FoxP3 является основным транскрипционным фактором Treg, что подразумевает необходимость его транслокации в ядро для участия Treg-лимфоцитов в подавлении иммунного ответа и воспаления [10]. В последнее время обсуждается наличие субпопуляций Treg-лимфоцитов с высокой и низкой экспрессией молекулы CD25 (CD4+CD25hiFoxP3+ и CD4+CD25lowFoxP3+Treg), которые, по-видимому, представляют собой клетки на различных стадиях зрелости. Причем, увеличение доли клеток с низкой экспрессией CD25 оказалось характерным для пациентов с хроническими воспалительными заболеваниями [2].

Следует признать, что для пациентов с сердечно-сосудистой патологией, в том числе, атеросклеротической природы, важнейшую роль играет морфология и функциональная активность эпикардиальной жировой ткани (ЭЖТ) [3]. ЭЖТ непосредственно прилежит к ткани миокарда и имеет с ней общее кровоснабжение. Несмотря на то, что адипоциты ЭЖТ имеют морфологию, свойственной белой жировой ткани, они обладают рядом черт бурой жировой ткани, что определяет их уникальность [7]. У пациентов с ишемической болезнью сердца (ИБС) ЭЖТ характеризуется более выраженным воспалением по сравнению с подкожной жировой тканью (ПЖТ) и висцеральными жировыми депо [7]. Однако на сегодняшний день получено крайне мало данных о вовлеченности лимфоцитарного звена иммунной системы в модуляцию воспаления в ЭЖТ у пациентов с ИБС, а также о взаимосвязи выраженности коронарного атеросклероза с долей иммуносупрессорных FoxP3+ T-регуляторных лимфоцитов в составе стромально-сосудистой фракции ЭЖТ.

Жировая ткань тимуса (ТЖТ) представляет собой наименее изученное в функциональном аспекте депо жировой ткани, начиная с того, что отсутствует однозначное мнение о происхождение тимусных адипоцитов [9]. При этом показано, что тимус в зрелом возрасте сохраняет очаги функциональной активности. FoxP3+ Treg-лимфоциты, в свою очередь, оказались способными к рециркуляции в тимус. Рециркулировавшие Treg могут подавлять развитие Treg-лимфоцитов de novo и, таким образом, способствовать срыву аутоиммунной толерантности, что особенно актуально у пациентов с ИБС и атеросклерозом [1, 6], однако взаимосвязь клеточного состава ТЖТ с выраженностью коронарного атеросклероза по-прежнему остается неизученной.

Целью данной работы стало исследование состава субпопуляций лимфоцитов и свойств FoxP3+ Treg-лимфоцитов в эпикардиальной, тимусной и подкожной жировой ткани в зависимости от выраженности коронарного атеросклероза у пациентов с хронической ИБС.  

Материалы и методы

Проведено наблюдательное одноцентровое одномоментное исследование на базе НИИ кардиологии Томского НИМЦ (директор – академик Попов С.В.). В исследование вошло 24 пациента с ИБС, имеющие показания для проведения хирургической операции на открытом сердце. Все исследования и манипуляции были проведены в рамках Хельсинкской декларации Всемирной медицинской ассоциации «Этические принципы проведения научных медицинских исследований с участием человека» с поправками 2000 г. и «Правилами клинической практики в Российской Федерации», утвержденными Приказом Минздрава РФ от 19.06.2003 г. № 266. Исследование было одобрено локальным этическим комитетом НИИ кардиологии Томского НИМЦ (протокол № 241 от 09.03.2023 г.). Все пациенты, вошедшие в исследование, подписали добровольное информированное согласие. Критерии включения в исследование: возраст пациентов от 40 до 70 лет; наличие верифицированного диагноза хронической ИБС со стабильной стенокардией II – III ФК; наличие показаний для проведения селективной ангиографии и проведения кардиохирургического вмешательства на открытом сердце. Критерии исключения из исследования: острые атеросклеротические осложнения или проведение хирургического вмешательства в течение последних 6 месяцев; любое острое воспалительное заболевание или хроническое заболевание в стадии обострения; хроническая болезнь почек выше с3б; любое онкологическое или гематологическое заболевание; отказ от участия в исследовании.

Все пациенты получали стандартную медикаментозную терапию. Как минимум за неделю до хирургического вмешательства всем пациентам была выполнена селективная ангиография на ангиографическом комплексе Artis one и Digitron-3NAC компьютерной системе (Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, China). На основании данных ангиографии оценивали выраженность коронарного атеросклероза путем расчета индекса  Gensini Score [13].

Материалом для исследования служили образцы ЭЖТ, ПЖТ и ТЖТ, взятые в ходе операционного вмешательства, массой 0,2 – 1 г. Транспортировку образцов в лабораторию осуществляли в течение 15 минут после помещения жировой ткани в среду М199. Выделение стромально-сосудистой фракции жировой ткани проводили следующим образом: образцы жировой ткани механически измельчали, добавляли раствор коллагеназы I типа в буфере Кребса-Рингера  (1 мг/мл, ПанЭко, Россия) и помещали в термостат при 37 °С и постоянном мягком перемешивании; затем добавляли раствор Кребса-Рингера в соотношении 1:1 для нейтрализации коллагеназы; полученную суспензию клеток пропускали через нейлонный фильтр (Falcon Cell strainer, диаметр пор 100 мкм), центрифугировали 5 мин при 400g, пропускали через нейлонный фильтр (Falcon Cell strainer, диаметр пор 700 мкм), центрифугировали 5 мин при 400g и ресуспендировали осадок в полной среде RPMI 1640 (10% фетальной бычьей сыворотки; 1% L-глутамина; 1% пенициллина/стрептомицина).

Суспензию клеток стромально-сосудистой фракции ЭЖТ, ПЖТ и ТЖТ аликвотировали по 100 мкл и проводили окрашивание основных субпопуляций лимфоцитов и NK-клеток (использовали коктейль моноклональных антител: анти-CD3-FITC; анти-CD16/CD56-PE; анти-CD45-PerCP-Cy5.5; анти-CD4-PE-Cy7; анти-CD19-APC; анти-CD8-APC-Cy7; BD, США), а также FoxP3+ Treg-лимфоцитов. Для окрашивания поверхностных маркеров FoxP3+ Treg-лимфоцитов использовали моноклональные антитела, меченные флуорохромами: анти-CD45-APC-Cy7; анти-CD4-FITC, анти-CD25-PE (BD Pharmingen, США). Затем клетки фиксировали, пермеабилизировали, и окрашивали антителами анти-FoxP3-AF647 (BD Pharmingen, США). В качестве ДНК-тропного красителя использовали 7-аминоактиномицин D (7-AAD).

Клетки собирали на проточной цитометре Amnis FlowSight (Cytek Biosciences, Fremont, США), оснащенном лазерами 488 нм и 642 нм, используя программное обеспечение INSIRE (Amnis Corporation, США). Светлопольные изображения собирали на канале 1. Регистрацию бокового светорассеяния производили с помощью лазера 785 нм. Анализ данных проводили в программе IDEAS 6.2.64.0 (Amnis Corporation, США). Выделяли субпопуляции CD4+CD25hiFoxP3+ и CD4+CD25lowFoxP3+Treg. Оценивали долю Treg в каждой субпопуляции с FoxP3, транслоцированным в ядро, с помощью мастера для анализа изображений клеток Nuclear Localization Wizard.

Статистическую обработку данных проводили с помощью программного обеспечения STATISTICA 10.0 (StatSoft, США). Для оценки характера распределения данных использовали критерий Шапиро-Уилка. Количественные данные представляли в виде медианы и межквартильного интервала (Me (Q1; Q3)). Категориальные данные представляли в виде абсолютных значений (n).  Для исследования значимости различий количественных данных применяли U-критерий Манна-Уитни. Ранговый коэффициент корреляции Спирмена (rs) использовали для оценки взаимосвязи между переменными. Значения p<0,05 считали статистически значимыми.

 

Результаты и обсуждение

Верхний квартиль индекса Gensini Score в общей выборке пациентов с ИБС составил 65,0 баллов. Мы разделили всех пациентов в зависимости от выраженности коронарного атеросклероза в соответствии с индексом Gensini Score: группа 1 – пациенты с Gensini Score<65 баллов; группа 2 – пациенты с Gensini Score ³65 баллов (наиболее выраженный и распространенный коронарный  атеросклероз). Группы пациентов были сопоставимы по полу, возрасту,  продолжительности ИБС, окружности талии, статусу курения, качеству контроля артериального давлению. Все пациенты принимали препараты статинов. Пациенты с Gensini Score³65 баллов характеризовались более высоким ИМТ по сравнению с пациентами с Gensini Score<65 баллов (Таблица 1).

Таблица 1

Базовые характеристики пациентов

Table 1

Basic characteristics of patients

Параметр

Parameter

Gensini Score<65 баллов (n=15)

Gensini Score<65 points (n=15)

Gensini Score³65 баллов (n=9)

Gensini Score³65 points (n=9)

p

Пол (муж/жен), n

Sex (male/female), n

12/3

9/0

0,266

Возраст, лет

Age, years

65,0 (58,0; 67,0)

65,0 (55,0; 68,0)

0,953

Gensini Score, баллы

Gensini Score, points

33,5 (9,0; 56,0)

77,5 (75,0; 100,0)

<0,001

Продолжительность ИБС, лет

CAD duration, years

4,5 (1,0; 12,0)

8,5 (2,3; 12,5)

0,482

ИМТ, кг/м2

BMI, kg/m2

27,3 (24,7; 29,0)

30,5 (28,7; 32,4)

0,035

Окружность талии, см

Waist circumference, cm

100,0

(96,5; 106,5)

106,0
(100,0; 111,0)

0,310

Курение, n

Smoking, n

7

3

0,679

Систолическое АД, мм рт. ст.

Systolic BP, mmHg

137,0

(125,0; 144,0)

125,0

(111,0; 133,0)

0,088

Диастолическое АД, мм рт. ст.

Diastolic BP, mmHg

68,0

(65,0; 77,0)

70,0

(68,0; 73,0)

0,689

Прием статинов, n

Statins intake, n

15

9

0,999

АД – артериальное давление; ИМТ – индекс массы тела; ИБС – ишемическая болезнь сердца

BP – blood pressure; BMI – body mass index; CAD – coronary artery disease

В общей группе мы выявили прямую корреляционную взаимосвязь между уровнем Gensini Score и долей CD4+CD25lo Treg клеток с внутриядерной транслокацией FoxP3 в ЭЖТ (rs=0,468; p=0,021). Относительное содержание CD4+CD25hi Treg клеток с внутриядерной транслокацией FoxP3 в ТЖТ было обратно взаимосвязано со значением отношения окружности талии к окружности бедер (rs=-0,474; p=0,041).

В группе с Gensini Score ³65 баллов пациенты характеризовались большим относительным содержанием CD4+CD25lo Treg клеток в ЭЖТ с внутриядерной транслокацией FoxP3, а также имели тенденцию к снижению относительного содержания CD4+CD25hi Treg клеток с внутриядерной транслокацией FoxP3 в ТЖТ (Таблица 2).

Таблица 2

Доля FoxP3+ Т-регуляторных лимфоцитов и уровень транслокации FoxP3 в ядро клеток в различных жировых депо пациентов с ИБС

Table 2

FoxP3+ T regulatory lymphocytes frequency and FoxP3 nuclear translocation in various fat depots of CAD patients

Параметр

Parameter

Gensini Score<65 баллов (n=15)

Gensini Score<65 points (n=15)

Gensini Score³65 баллов (n=9)

Gensini Score³65 points (n=9)

p

ТЖТ CD25hiFoxP3+ Treg, %

TAT CD25hiFoxP3+ Treg, %

7,5 (4,5; 13,9)

9,1 (6,5; 16,3)

0,482

ТЖТ CD25loFoxP3+ Treg, %

TAT CD25loFoxP3+ Treg, %

3,2 (2,2; 6,7)

5,5 (3,9; 6,8)

0,411

ТЖТ ядр FoxP3 CD25hi Treg, %

TAT nucl FoxP3 CD25hi Treg, %

34,3 (22,8; 51,4)

19,4 (14,9; 26,0)

0,084

ТЖТ ядр FoxP3 CD25lo Treg, %

TAT nucl FoxP3 CD25lo Treg, %

23,1 (11,6; 38,8)

13,8 (5,8; 18,7)

0,138

ЭЖТ CD25hiFoxP3+ Treg, %

EAT CD25hiFoxP3+ Treg, %

9,5 (4,2; 17,2)

8,9 (5,6; 22,3)

0,770

ЭЖТ CD25loFoxP3+ Treg, %

EAT CD25loFoxP3+ Treg, %

3,0 (0,9; 11,0)

3,1 (2,2; 6,2)

0,999

ЭЖТ ядр FoxP3 CD25hi Treg, %

EAT nucl FoxP3 CD25hi Treg, %

19,6 (0; 32,0)

16,7 (11,8; 22,1)

0,770

ЭЖТ ядр FoxP3 CD25lo Treg, %

EAT nucl FoxP3 CD25lo Treg, %

11,0 (0; 26,1)

27,6 (20,0; 33,3)

0,014

ПЖТ CD25hiFoxP3+ Treg, %

SAT CD25hiFoxP3+ Treg, %

13,1 (9,8; 20,0)

8,8 (4,5; 17,5)

0,411

ПЖТ CD25loFoxP3+ Treg, %

SAT CD25loFoxP3+ Treg, %

4,6 (1,4; 10,5)

3,5 (1,8; 8,2)

0,999

ПЖТ ядр FoxP3 CD25hi Treg, %

SAT nucl FoxP3 CD25hi Treg, %

15,8 (7,8; 33,0)

16,3 (0; 20,9)

0,640

ПЖТ ядр FoxP3 CD25lo Treg, %

SAT nucl FoxP3 CD25lo Treg, %

16,4 (0; 24,5)

0 (0; 14,3)

0,411

ТЖТ – тимусная жировая ткань; ПЖТ – подкожная жировая ткань; ЭЖТ – эпикардиальная жировая ткань; ядр FoxP3 – доля клеток с FoxP3, локализованным в ядре; для субпопуляций Treg указана доля клеток от всех CD4+ Т-лимфоцитов; доля клеток с транслокацией FoxP3 в ядро указана от всех CD25hi Treg или CD25lo Treg.

TAT – thymic adipose tissue; SAT – subcutaneous adipose tissue; EAT – epicardial adipose tissue; nucl FoxP3 – frequency of cells with FoxP3, localized in nucleus; Treg frequency represents percentage of all CD4+ T lymphocytes; frequency of cells with FoxP3 nuclear translocation represents percentage of all CD25hi Treg или CD25lo Treg.

 

Кроме того, у пациентов с Gensini Score ³65 баллов мы выявили статистически значимо большее содержание CD8+ Т-лимфоцитов и NK-клеток и меньшее содержание двойных позитивных CD4+CD8+ Т-лимфоцитов в ТЖТ по сравнению с пациентами с Gensini Score<65 баллов  (Таблица 3).

Таблица 3

Субпопуляции лимфоцитов в различных жировых депо пациентов с ИБС

Table 3

Lymphocyte subsets in various fat depots of CAD patients

Параметр

Parameter

Gensini Score<65 баллов (n=15)

Gensini Score<65 points (n=15)

Gensini Score³65 баллов (n=9)

Gensini Score³65 points (n=9)

p

ТЖТ CD4+ Т-лимфоциты, %

TAT CD4+ Т lymphocytes, %

33,6 (30,5; 43,5)

29,6 (25,4; 31,6)

0,112

ТЖТ CD8+ Т-лимфоциты, %

TAT CD8+ Т lymphocytes, %

19,5 (15,8; 27,2)

30,3 (29,9; 30,9)

0,029

ТЖТ CD4+CD8+ Т-лимфоциты, %

TAT CD4+CD8+ Т lymphocytes, %

1,3 (0,7; 2,4)

0,3 (0,2; 0,6)

0,038

ТЖТ NK-клетки, %

TAT NK cells, %

3,1 (1,8; 6,0)

14,2 (10,9; 16,7)

0,022

ТЖТ NKT-клетки, %

TAT NKT cells, %

9,9 (4,7; 14,6)

10,9 (5,8; 18,9)

0,596

ТЖТ В-лимфоциты, %

TAT B lymphocytes

5,7 (3,8; 8,5)

3,3 (2,6; 4,2)

0,316

ЭЖТ CD4+ Т-лимфоциты, %

EAT CD4+ T lymphocytes

35,2 (31,0; 37,9)

31,2 (23,5; 39,8)

0,680

ЭЖТ CD8+ Т-лимфоциты, %

EAT CD8+ T lymphocytes, %

26,8 (19,6; 28,4)

30,6 (22,7; 35,9)

0,517

ЭЖТ NK-клетки, %

EAT NK cells, %

10,7 (6,6; 15,4)

10,1 (5,9; 12,9)

0,680

ЭЖТ NKT-клетки, %

EAT NKT cells, %

13,0 (5,0; 13,4)

14,7 (6,4; 20,2)

0,596

ЭЖТ В-лимфоциты, %

EAT B lymphocytes

4,8 (2,7; 11,1)

7,9 (4,2; 10,8)

0,680

ПЖТ CD4+ Т-лимфоциты, %

SAT CD4+ T lymphocytes, %

32,8 (23,7; 32,9)

34,1 (32,7; 36,4)

0,216

ПЖТ CD8+ Т-лимфоциты, %

SAT CD8+ T lymphocytes

16,3 (13,4; 20,5)

27,1 (18,6; 28,7)

0,216

ПЖТ NK-клетки, %

SAT NK cells, %

21,5 (16,3; 26,1)

14,6 (10,8; 21,9)

0,215

ПЖТ NKT-клетки, %

SAT NKT cells, %

14,4 (7,3; 17,3)

10,1 (6,7; 18,4)

0,723

ПЖТ В-лимфоциты, %

SAT B lymphocytes, %

2,2 (1,3; 3,7)

1,9 (1,2; 2,3)

0,953

ТЖТ – тимусная жировая ткань; ПЖТ – подкожная жировая ткань; ЭЖТ – эпикардиальная жировая ткань; доля клеток указана от всех CD45+ лимфоцитов.

TAT – thymic adipose tissue; SAT – subcutaneous adipose tissue; EAT – epicardial adipose tissue; the frequency of cells is indicated as percentage of all CD45+ lymphocytes.

 

По данным корреляцонного анализа уровень ядерной транслокации FoxP3 в CD4+CD25hi Treg клетках ТЖТ был обратно взаимосвязан с долей CD8+ Т-лимфоцитов (rs=-0,653; p=0,012) и NK-клеток (rs=-0,723; p=0,003) в ТЖТ, и прямо – с долей двойных позитивных CD4+CD8+ Т-лимфоцитов в ТЖТ (rs=0,567; p=0,034).

Ранее были получены сведения, что сохранность функциональной активности тимуса непосредственно взаимосвязана с тяжестью коронарного атеросклероза. Отчасти это можно объяснить нарушением негативной селекции в тимусе и выходу аутореактивных клонов Т-лимфоцитов, способных распознавать молекулу ApoB [6]. При этом была также показана тесная взаимосвязь между состоянием тимуса и метаболической дисфункцией: полная жировая дегенерация тимуса ассоциировалась с мужским полом, более высоким ИМТ, дислипидемией и артериальной гипертензией [12].

На наш взгляд, присутствие меньшего количества двойных позитивных CD4+CD8+ Т-лимфоцитов в ТЖТ при более выраженном коронарном атеросклерозе, может отражать более выраженное угасание тимопоэза у пациентов с ИБС, и может находиться в непосредственной взаимосвязи с функциональной активностью Treg-лимфоцитов. Помимо тимуса, присутствие двойных позитивных CD4+CD8+ лимфоцитов было показано в жировой ткани средостения и дуге аорты [14]. Остается открытым вопрос, способны ли CD4+CD8+ лимфоциты мигрировать из жировой ткани в стенки сосуда, и какую функцию они там могут выполнять.

Для CD8+ Т-лимфоцитов жировой ткани, в свою очередь, была показана способность к переключению фенотипа макрофагов на провоспалительный М1-фенотип и поддержанию воспаления в жировой ткани [8]. Схожую функцию, по-видимому, могут выполнять и NK-клетки жировой ткани [5]. Мы показали взаимосвязь этих клеточных популяций, расположенных в ТЖТ, с развитием выраженного атеросклеротического поражения коронарных артерий у пациентов с ИБС, и их ассоциацию с уровнем ядерной транслокации FoxP3 в Treg-лимфоцитах.

В соответствие с нашими данными, Treg-лимфоциты в ЭЖТ, непосредственно прилегающей к ткани миокарда, при наиболее выраженном коронарном атеросклерозе находятся в активированном состоянии, так как уровень транслокации FoxP3 в их ядро был выше. Учитывая способность Treg-лимфоцитов к рециркуляции в тимус из периферических органов и систем [1], нельзя исключить, что субпопуляции ТЖТ и ЭЖТ Treg-лимфоцитов взаимосвязаны между собой, а Treg из ЭЖТ при возвращении в тимус, могут подавлять генерацию Treg de novo и приводить к угнетению аутотолерантности. ЭЖТ даже в физиологических условиях характеризуется более выраженной экспрессией генов, контролирующих развитие воспаления, и снижением регуляции со стороны генов, контролирующих пролиферацию и катаболизм, по сравнению с ПЖТ. Нельзя исключить, что в условиях ишемии, адипоциты, взаимодействуя напрямую с кардиомиоцитами и стромальными клетками миокарда, могут получать дополнительные паракринные сигналы, способствующие прогрессированию воспаления [11]. Природа данных сигналов и место Treg-лимфоцитов в регуляции данных процессов требует дальнейшего изучения.

Заключение. Таким образом, мы показали, что у пациентов с хронической ИБС уровень транслокации FoxP3 в ядро в эпикардиальной жировой ткани в CD4+CD25lo Treg-клетках прямо связан с выраженностью атеросклероза, в то время как в тимусной жировой ткани имеется тенденция к наличию обратной взаимосвязи между выраженностью атеросклероза и уровнем транслокации FoxP3 в ядро в CD4+CD25hi Treg-клетках. В жировой ткани тимуса уровень ядерной транслокации FoxP3 в CD4+CD25hi Treg-клетках имеет ассоциацию с антропометрическими показателями ожирения и изменением субпопуляционного состава лимфоцитов. Требуется проведение дальнейших исследований для изучения молекулярных механизмов реализации данных взаимосвязей и определения места данного патофизиологического феномена в стратификации риска и разработке подходов к терапии пациентов с коронарным атеросклерозом и хронической ИБС.

Благодарности. Исследование выполнено при финансовой поддержке Российского научного фонда (грант № 23-25-00010).

×

About the authors

Irina Kologrivova

Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences

Email: ikologrivova@gmail.com
ORCID iD: 0000-0003-4537-0008
SPIN-code: 6987-2021

Cand. Sci. (Med.), Senior Research Fellow, Department of Clinical Laboratory Diagnostics

Russian Federation, 634012, Tomsk, Kievskaya, 111 A

Alexey A. Dmitriukov

Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences

Email: aldmn9k@mail.ru
ORCID iD: 0000-0002-6924-966X

Junior Research Fellow, Department of Clinical  Laboratory Diagnostics

Russian Federation, 634012, Tomsk, Kievskaya, 111 A

Natalia V. Naryzhnaya

Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences

Email: natalynar@yandex.ru
ORCID iD: 0000-0003-2264-1928

M.D., Ph.D., Dr. Sci. (Med.), Leading Research Fellow, Laboratory of Experimental Cardiology

Russian Federation, 634012, Tomsk, Kievskaya, 111 A

Olga A. Koshelskaya

Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences

Author for correspondence.
Email: koshel@live.ru
ORCID iD: 0000-0002-6679-1269

M.D., Ph.D., Prof., the Leading Research Fellow of the Department of Atherosclerosis and Coronary Artery Disease

Russian Federation, 634012, Tomsk, Kievskaya 111 A

Olga A. Kharitonova

Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences

Email: hoa@cardio-tomsk.ru
ORCID iD: 0000-0001-6278-1744

Junior Research Fellow, Department of Atherosclerosis and Coronary Artery Disease

Russian Federation, 634012, Tomsk, Kievskaya 111 A

Alexandra I. Vyrostkova

Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences

Email: alexandra.vy20@gmail.com
ORCID iD: 0009-0000-7865-6948

Research Laboratory Assistant, Department of Clinical  Laboratory Diagnostics

Russian Federation, 634012, Tomsk, Kievskaya 111 A

Vladimir V. Evtushenko

Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences

Email: evtushenko.vladimir@gmail.com
ORCID iD: 0000-0002-5537-0864

M.D., Ph.D., Dr. Sci. (Med.), Doctor of the Department of Cardiovascular Surgery

Russian Federation, 634012, Tomsk, Kievskaya 111 A

Anastasia S. Krapivina

Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences

Email: ya.anastasiya.krapivina99@yandex.ru
ORCID iD: 0000-0001-6850-182X

Research Laboratory Assistant, Department of Atherosclerosis and Coronary Artery Disease

Russian Federation, 634012, Tomsk, Kievskaya 111 A

Polina E. Riabchenko

The Siberian State Medical University

Email: ryabchenkomail.ru@gmail.com
ORCID iD: 0009-0000-7255-1053

Student

Russian Federation, 634050, Tomsk, Moskovskii trakt, 2

Tatiana E. Suslova

Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences

Email: tes@cardio-tomsk.ru
ORCID iD: 0000-0001-9645-6720

Cand. Sci. (Med.), Head of the Department, Department of Clinical Laboratory Diagnostics

Russian Federation, 634012, Tomsk, Kievskaya 111 A

References

  1. Kozlov V.A. Determining role of thymus in immune pathogenesis of autoimmune, oncological and infectious diseases. Medical Immunology, 2023, Vol. 25, no. 1, pp. 39-58
  2. Kologrivova I.V., Suslova T.E., Koshelskaya O.A., Kharitonova O.A., Trubacheva O.A., Kravchenko E.S., Dmitriukov A.A. T-lymphocytes FoxP3+ and their interconnection with the severity of coronary atherosclerosis in patients with coronary artery disease and diabetes mellitus type 2: a pilot study. Diabetes Mellitus, 2023, Vol. 26, no. 3, pp. 213-223. doi: https://doi.org/10.14341/DM12980
  3. Koshelskaya O.A., Naryzhnaya N.N., Kologrivova I.V., Suslova T.E., Kravchenko E.S., Charitonova O.A., Andreev S.L., Margolis N.Yu., Sharipova N.G., Krapivina A.S. Correlation of epicardial adipocytes hypertrophy with adipokines, inflammation and glucose and lipid metabolism. The Siberian Journal of Clinical and Experimental Medicine, 2023, Vol. 38, no. 1, pp. 64-74. https://www.sibjcem.ru/jour/article/view/1714/788 doi: 10.29001/2073-8552-2023-38-1-64-74
  4. Romantsova T.I. Adipose tissue: colors, depots and functions. Obesity and metabolism, 2021, Vol. 18, no. 3, pp. 282-301. https://doi.org/10.14341/omet12748
  5. Haugstøyl M.E., Cornillet M., Strand K., Stiglund N., Sun D., Lawrence-Archer L., Hjellestad I.D., Busch C., Mellgren G., Björkström N.K., Fernø J. Phenotypic diversity of human adipose tissue-resident NK cells in obesity. Front. Immunol., 2023, Vol. 14, 1130370. doi: 10.3389/fimmu.2023.1130370
  6. Hester A.K., Semwal M.K., Cepeda S., Xiao Y., Rueda M., Wimberly K., Venables T., Dileepan T., Kraig E., Griffith A.V. Redox regulation of age-associated defects in generation and maintenance of T cell self-tolerance and immunity to foreign antigens. Cell Rep. 2022, Vol. 38, no. 7, 110363. doi: 10.1016/j.celrep.2022.110363
  7. Iacobellis G. Epicardial adipose tissue in contemporary cardiology. Nat. Rev. Cardiol., 2022, Vol. 19, pp. 593–606. doi: 10.1038/s41569-022-00679-9.
  8. Kiran S., Kumar V., Murphy E.A., Enos R.T., Singh U.P. High fat diet-induced CD8+ T cells in adipose tissue mediate macrophages to sustain low-grade chronic inflammation. Front, Immunol. 2021, Vol. 12, 680944. doi: 10.3389/fimmu.2021.680944
  9. Liang Z., Dong X., Zhang Z., Zhang Q., Zhao Y. Age-related thymic involution: Mechanisms and functional impact. Aging Cell, 2022, Vol. 21, no. 8, e13671. doi: 10.1111/acel.13671
  10. Magg T., Mannert J., Ellwart J.W., Schmid I., Albert M.H. Subcellular localization of FOXP3 in human regulatory and nonregulatory T cells. Eur. J. Immunol. 2012, Vol. 42, no. 6, pp. 1627-1638. doi: 10.1002/eji.201141838.
  11. Rietdorf K., MacQueen H. Investigating interactions between epicardial adipose tissue and cardiac myocytes: what can we learn from different approaches? Br. J. Pharmacol., 2017, Vol. 174, no. 20, pp.3542-3560. doi: 10.1111/bph.13678
  12. Sandstedt M., Chung R.W.S., Skoglund C., Lundberg A.K., Östgren C.J., Ernerudh J., Jonasson L. Complete fatty degeneration of thymus associates with male sex, obesity and loss of circulating naïve CD8+ T cells in a Swedish middle-aged population. Immun Ageing, 2023, Vol. 20, no. 1, 45. doi: 10.1186/s12979-023-00371-7
  13. Wang K.Y., Zheng Y.Y., Wu T.T., Ma Y.T., Xie X. Predictive value of Gensini Score in the long-term outcomes of patients with coronary artery disease who underwent PCI. Front. Cardiovasc. Med., 2022, Vol. 8, 778615. doi: 10.3389/fcvm.2021.778615
  14. Winkels H., Ghosheh Y., Kobiyama K., Kiosses W.B., Orecchioni M., Ehinger E., Suryawanshi V., Herrera-De La Mata S., Marchovecchio P., Riffelmacher T., Thiault N., Kronenberg M., Wolf D., Seumois G., Vijayanand P., Ley K. Thymus-derived CD4+CD8+ cells reside in mediastinal adipose tissue and the aortic arch. J. Immunol. 2021, Vol. 207, no. 11, pp. 2720-2732. doi: 10.4049/jimmunol.2100208
  15. Zeng Q., Sun X., Xiao L., Xie Z., Bettini M., Deng T. A unique population: adipose-resident regulatory T cells. Front. Immunol., 2018, Vol. 9, 2075. doi: 10.3389/fimmu.2018.02075

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Kologrivova I., Dmitriukov A.A., Naryzhnaya N.V., Koshelskaya O.A., Kharitonova O.A., Vyrostkova A.I., Evtushenko V.V., Krapivina A.S., Riabchenko P.E., Suslova T.E.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № 77 - 11525 от 04.01.2002.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies