COMPARATIVE ANALYSIS OF THE CONSERVATION OF NUCLEOPROTEIN IMMUNOGENIC T-CELL EPITOPES OF MASTER DONOR VIRUSES FOR LIVE AND INACTIVATED INFLUENZA VACCINES



Cite item

Full Text

Abstract

Abstract

Antigen-specific T cells are an important part of antiviral responses, and modern influenza vaccines are designed to induce this mode of immunity. Live attenuated influenza vaccine (LAIV) is a potent inducer of T-cell immunity because of its ability to induce productive infection in the upper respiratory tract. Inactivated influenza vaccines (IIV) and novel vaccine candidates can also induce virus-specific T-cells when appropriate adjuvants are used. In this case, non-structural and intrinsic antigens of the master donor viruses, particularly  nucleoprotein (NP), are the main targets for the development of T-cell immunity. The most commonly used donor strains for LAIVs and IIVs worldwide were derived from viruses isolated between 1933 and 1960. In this regard, the question of conservation of epitopes immunogenic for CD8+ T-lymphocytes (CTL-epitopes) in donor-derived NPs, i.e. the ability of cytotoxic T cells specific to the donor’s NP to recognize modern influenza A virus nucleoproteins, is relevant. The aim of the study was to evaluate the conservation of CTL-immunogenic NP epitopes of donors traditionally used to create LAIVs and IIVs. Materials and methods. Epitope NP analysis was performed for 1614 and 1767 strains of influenza A virus subtypes H1N1 and H3N2, respectively, which circulated in 2009-2023 (data from the NCBI Influenza Virus Database). Immune Epitope Database (IEDB, www.iedb.org), NetCTL's built-in CTL-epitope prediction algorithm and NetChop proteolysis site predictor were used. CTL-epitopes were mapped to NPs of master donor viruses A/Leningrad/134/17/54 (H2N2), A/Ann Arbor/6/60 (H2N2), A/PR8/34 (H1N1), and A/WSN/1933 (H1N1) using the CrustalO alignment algorithm in JalView 2.8.1 Software. The immunogenicity and conservation of selected epitopes were further evaluated using IEDB T-cell Immunogenicity Predictor and Epitope Conservancy Assay, respectively. Results. The majority of immunogenic CTL-epitopes of donor viruses proved to be non-conserved, i.e., not found in NPs of circulating influenza strains. Conversely, most CTL-immunogenic NP epitopes of modern viruses are absent in donor viruses and cannot be induced by vaccination with conventional vaccines. The data obtained indicate the need to actualize NP in vaccine composition by directed mutagenesis of the donor-derived NP gene or by introduction of the gene encoding NP of circulating influenza viruses into vaccine strains.

About the authors

Alexandra Ya. Rak

Institute of Experimental Medicine, St Petersburg, Russia

Email: alexandrak.bio@gmail.com
ORCID iD: 0000-0001-5552-9874
Scopus Author ID: 57205272689
ResearcherId: AAD-1398-2022

PhD, Senior Researcher at Department of Virology

Russian Federation, 197022, Russia, St Petersburg, Akademika Pavlova St. 12

Larisa G. Rudenko

Institute of Experimental Medicine, St Petersburg, Russia

Email: vaccine@mail.ru
ORCID iD: 0000-0002-0107-9959
Scopus Author ID: 56402849200
ResearcherId: B-5169-2015

D. Med. Sci., Prof., Head of Department of Virology

Russian Federation, 197022, Russia, St Petersburg, Akademika Pavlova St. 12

Irina N. Isakova-Sivak

Institute of Experimental Medicine, St Petersburg, Russia

Author for correspondence.
Email: isakova.sivak@iemspb.ru
ORCID iD: 0000-0002-2801-1508
Scopus Author ID: 23973026600
ResearcherId: C-1034-2014

D. Biol. Sci., RAS Corresponding Member, Head of Laboratory of Immunology and Prophylaxis of Viral Infections of Department of Virology

Russian Federation, 197022, Russia, St Petersburg, Akademika Pavlova St. 12

References

  1. Influenza. World Health Organization (3 october 2023). — World Health Organization fact sheet. Access date: March 23, 2024. [Electr. resource] URL: https://www.who.int/ru/news-room/fact-sheets/detail/influenza-(seasonal)
  2. Grant E., Wu C., Chan K.F., Eckle S., Bharadwaj M., Zou Q.M., Kedzierska K., Chen W. Nucleoprotein of influenza A virus is a major target of immunodominant CD8+ Т-cell responses. Immunology and Cell Biology. 2013; 91(2): 184-194. doi: 10.1038/icb.2012.78.
  3. Sridhar S., Brokstad K.A., Cox R.J. Influenza Vaccination Strategies: Comparing Inactivated and Live Attenuated Influenza Vaccines. Vaccines (Basel). 2015;3(2): 373-89. doi: 10.3390/vaccines3020373.
  4. Rudenko L., Yeolekar L., Kiseleva I., Isakova-Sivak I.N. Development and approval of live attenuated influenza vaccines based on Russian master donor viruses: Process challenges and success stories. Vaccine. 2016; 34(45): 5436-5441. doi: 10.1016/j.vaccine.2016.08.018.
  5. Vita R., Overton J.A., Greenbaum J.A., Ponomarenko J., Clark J.D., Cantrell J.R., Wheeler D.K., Gabbard J.L., Hix D., Sette A., Peters B. The immune epitope database (IEDB) 3.0. Nucleic Acids Research. 2015; 43(D1): D405-D412. doi: 10.1093/nar/gku938.
  6. Sievers F., Wilm A., Dineen D., Gibson T.J., Karplus K., Li W., Lopez R., McWilliam H., Remmert M., Söding J., Thompson J.D., Higgins D.G. Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology. 2011; 7(1): 539. doi: 10.1038/msb.2011.75.
  7. Larsen M. V., Lundegaard C., Lamberth K., Buus S., Lund O., Nielsen M. Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC bioinformatics. 2007; 8: 1-12. doi: 10.1186/1471-2105-8-424.
  8. Nielsen M., Lundegaard C., Lund O., Keşmir C. The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage. Immunogenetics. 2005; 57: 33-41. doi: 10.1007/s00251-005-0781-7.
  9. Calis J. J. A., Maybeno M., Greenbaum J.A., Weiskopf D., De Silva A.D., Sette A., Keşmir C., Peters B. Properties of MHC class I presented peptides that enhance immunogenicity. PLoS Computational Biology. 2013; 9(10): e1003266. doi: 10.1371/journal.pcbi.1003266.
  10. Bui H. H., Sidney J., Li W., Fusseder N., Sette A. Development of an epitope conservancy analysis tool to facilitate the design of epitope-based diagnostics and vaccines. BMC bioinformatics. 2007; 8: 1-6. doi: 10.1186/1471-2105-8-361.
  11. Weaver S., Shank S.D., Spielman S.J., Li M., Muse S.V., Kosakovsky Pond S.L. Datamonkey 2.0: a modern web application for characterizing selective and other evolutionary processes. Molecular Biology and Evolution. 2018; 35(3): 773-777. doi: 10.1093/molbev/msx335.
  12. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution. 2011; 28(10): 2731-2739. doi: 10.1093/molbev/msr121.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Rak A.Y., Rudenko L.G., Isakova-Sivak I.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № 77 - 11525 от 04.01.2002.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies