IN SITU AND IN SILICO MODELING OF THE HEMATOPOIESIS-INDUCING EFFECT OF CHELIDONIC ACID



Cite item

Full Text

Abstract

AbstractIntroduction. The current trend in regenerative medicine, in the context of an aging population, is the search for new ways and means to optimize tissue bioengineering. One of the convenient models for in situ studying bone marrow regeneration is the subcutaneous ectopic osteogenesis test on scaffolds that imitate the architecture of bone tissue. Chelidonic acid (CA), a small molecule, is capable of participating in various cellular processes and metabolic pathways, and it can activate the osteogenic differentiation of mesenchymal stem cells. However, the molecular mechanisms behind the regulatory effects of CA remain unknown.The purpose of the study. The aim of this study was to investigate the modulatory effect of CA on the in situ formation of hematopoietic foci, as well as to predict target genes and intracellular signaling pathways involved in the hematopoietic activity of CA.Materials and methods. An aqueous solution of CA, isolated from an extract of the Saussurea controversa plant. Course (daily for 35 days) oral administration of CA. Ectopic osteogenesis testing in Balb/c mice. Morphometric analysis of histological sections after 45 days and in silico modelling of gene expression with statistical analysis.Results. CA, when administered orally in a low dose (10 mg / kg), threefold increases the normalized area of bone marrow in the composition of bone tissue plates grown in situ in a test of ectopic subcutaneous osteogenesis in mice. This effect is associated essentially (a probability of CA activity Pa > 0.5 and a probability of inactivity Pi < 0.5) with enhanced expression of 358 hematopoiesis-related genes, as predicted by in silico analysis. The top list with the highest Pa value included 10 target genes, such as GATA1, CITED2, SFRP1, EP300, LGALS9, VNN1, IL10RB, RARA, CD83, and HMOX1.Conclusion. CA has a significant ability to enhance the reparative remodeling of hematopoietic tissue in situ. The next phase of research will be to test actual target genes and signaling pathways that mediate the regulatory effect of HC on hematopoiesis both in vitro and in vivo, as well as in clinical settings.

About the authors

Temur F. Nasibov

Siberian State Medical University, Tomsk, Russian Federation

Email: temur.nsbv@gmail.com
ORCID iD: 0000-0002-8056-3967
SPIN-code: 9651-1327

Laboratory Assistant, Laboratory of Cellular and Microfluidic Technologies

Russian Federation, 2/7 Moskovskii Trakt Tomsk 634050 Russian Federation

Anna V. Gorokhova

Siberian State Medical University, Tomsk, Russian Federation

Email: a.gorokhova3062@gmail.com
ORCID iD: 0000-0001-8401-7181

Laboratory Assistant, Laboratory of Cellular and Microfluidic Technologies

Russian Federation, 2/7 Moskovskii Trakt Tomsk 634050 Russian Federation

Ekaterina D. Porokhova

Siberian State Medical University, Tomsk, Russian Federation

Email: porohova_e@mail.ru
ORCID iD: 0000-0002-7317-2036
SPIN-code: 5986-3903
Scopus Author ID: 57209007701
ResearcherId: AAI-1952-2020

Assistant, Department of morphology and general pathology

Russian Federation, 2/7 Moskovskii Trakt Tomsk 634050 Russian Federation

Arina A. Starosvetskaya

Siberian State Medical University, Tomsk, Russian Federation

Email: arinastar01@gmail.com

Student of the faculty of medicine and biology

Russian Federation, 2/7 Moskovskii Trakt Tomsk 634050 Russian Federation

Usman A. Bariev

Siberian State Medical University, Tomsk, Russian Federation

Email: Sorry9337@mail.ru

Student of the faculty of medicine

Russian Federation, 2/7 Moskovskii Trakt Tomsk 634050 Russian Federation

Vladislav E. Nosov

Siberian State Medical University, Tomsk, Russian Federation

Email: Vladothernoises@gmail.com

Laboratory Assistant, Department of Normal Physiology

Russian Federation, 2/7 Moskovskii Trakt Tomsk 634050 Russian Federation

Larisa S. Litvinova

Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation

Email: LLitvinova@kantiana.ru
ORCID iD: 0000-0001-5231-6910
SPIN-code: 6703-3412
Scopus Author ID: 7007068521
ResearcherId: A-9672-2014

PhD, MD (Medicine), Director, Center for Immunology and Cellular Biotechnologies

Russian Federation, 14 Aleksandra Nevskogo Kaliningrad 236041 Russian Federation

Elena Yu. Avdeeva

Siberian State Medical University, Tomsk, Russian Federation

Email: avdeeva.ey1@ssmu.ru
ORCID iD: 0000-0001-7061-9843
SPIN-code: 2846-3039
Scopus Author ID: 14324240900
ResearcherId: P-7248-2016

PhD, MD (Pharmaceutical), Research Associate, Laboratory of Cellular and Microfluidic Technologies

Russian Federation, 2/7 Moskovskii Trakt Tomsk 634050 Russian Federation

Mikhail V. Белоусов

Siberian State Medical University, Tomsk, Russian Federation

Email: belousov.mv@ssmu.ru
ORCID iD: 0000-0002-2153-7945
SPIN-code: 8185-8117
Scopus Author ID: 55808990700
ResearcherId: Q-3827-2016

PhD, MD (Pharmaceutical), Leading Research Associate, Laboratory of Cellular and Microfluidic Technologies

Russian Federation, 2/7 Moskovskii Trakt Tomsk 634050 Russian Federation

Igor A. Khlusov

Siberian State Medical University, Tomsk, Russian Federation

Author for correspondence.
Email: khlusov.ia@ssmu.ru
ORCID iD: 0000-0003-3465-8452
SPIN-code: 8443-8910
Scopus Author ID: 7004826401
ResearcherId: A-4945-2014

PhD, MD (Medicine), Chief, Laboratory of Cellular and Microfluidic Technologies

Russian Federation, 2/7 Moskovskii Trakt Tomsk 634050 Russian Federation

References

  1. Miroshnichenko L.A., Polyakova T. U., Avdeeva E. YU., et al. Helidonovaya kislota i ee derivaty: obshchij spektr biologicheskoj aktivnosti i osteogennye svojstva. Razrabotka i registraciya lekarstvennyh sredstv. 2022, vol.11, no.4, pp. 60–71. doi: 10.33380/2305-2066-2022-11-4-60-71
  2. [Electronic resource] / Brunner-Munzel Test // CRAN. Available from: https://search.rproject.org/CRAN/refmans/brunnermunzel/html/00Index.html [Accessed 22 February 2024]
  3. Avdeeva E., Porokhova E., Khlusov I., et al. Calcium Chelidonate: Semi-Synthesis, Crystallography, and Osteoinductive Activity In Vitro and In Vivo. Pharmaceuticals (Basel). 2021 vol.14, no.6, pp.579. Published 2021 Jun 17. doi: 10.3390/ph14060579
  4. Avdeeva E., Shults E., Rybalova T., Reshetov Y., Porokhova E., Sukhodolo I., Litvinova L., Shupletsova V., Khaziakhmatova O., Khlusov I., Guryev A. Belousov M.. Chelidonic Acid and Its Derivatives from Saussurea Controversa: Isolation, Structural Elucidation and Influence on the Osteogenic Differentiation of Multipotent Mesenchymal Stromal Cells In Vitro. Biomolecules. 2019, vol.9, no.5, pp.189. Published 2019 May 16. doi: 10.3390/biom9050189
  5. Chan C.K., Chen C.C., Luppen C.A., Kim J.B., DeBoer A.T., Wei K., Helms J.A., Kuo C.J., Kraft D.L., Weissman I.L.. Endochondral ossification is required for haematopoietic stem-cell niche formation. Nature. 2009 vol. 457, no. 7228, pp.490-4. doi: 10.1038/nature07547
  6. Filimonov D.A., Lagunin A.A., Gloriozova T.A., Rudik A.V., Druzhilovskii D.S., Pogodin P.V., Poroikov V.V.. Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chemistry of Heterocyclic Compounds. 2014, vol.50, no.3, pp. 444-457. doi: 10.1007/s10593-014-1496-1
  7. Korkmaz S, Göksülük D, Zararsiz G. MVN: An R package for assessing multivariate normality. R JOURNAL 2014, vol.6, no.2.
  8. Lagunin A, Ivanov S, Rudik A, Filimonov D, Poroikov V. DIGEP-Pred: web service for in silico prediction of drug-induced gene expression profiles based on structural formula. Bioinformatics. 2013, vol. 29, no.16, pp. 2062-2063. doi: 10.1093/bioinformatics/btt322
  9. Scott M.A., Levi B., Askarinam A., Nguyen A., Rackohn T., Ting K., Soo C. James A.W.. Brief review of models of ectopic bone formation. Stem Cells Dev. 2012, vol.21, no.5, pp. 655-667. doi: 10.1089/scd.2011.0517
  10. Slenter, D. N., Kutmon, M., Hanspers, K., Riutta, A., Windsor, J., Nunes, N., Mélius, J., Cirillo, E., Coort, S. L., Digles, D., Ehrhart, F., Giesbertz, P., Kalafati, M., Martens, M., Miller, R., Nishida, K., Rieswijk, L., Waagmeester, A., Eijssen, L. M. T., Evelo, C. T., Willighagen, E. L.. WikiPathways: a multifaceted pathway database bridging metabolomics to other omics research. Nucleic Acids Res. 2018, vol.46 no. D1, pp. D661-D667. doi: 10.1093/nar/gkx1064
  11. Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., Feng, T., Zhou, L., Tang, W., Zhan, L., Fu, X., Liu, S., Bo, X., Yu, G.. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Camb). 2021, vol. 2, no. 3, pp.100141. Published 2021 Jul 1. doi: 10.1016/j.xinn.2021.100141
  12. Yu G., Wang L.G., Yan G.R., He Q.Y.. DOSE: an R/Bioconductor package for disease ontology semantic and enrichment analysis. Bioinformatics. 2015, vol. 31, no.4, pp. 608-609. doi: 10.1093/bioinformatics/btu684
  13. Yurova K.A., Khaziakhmatova O.G., Melashchenko E.S., Malashchenko V.V., Shunkin E.O., Shupletsova V.V., Ivanov P.A., Khlusov I.A., Litvinova L.S.. Cellular and Molecular Basis of Osteoblastic and Vascular Niches in the Processes of Hematopoiesis and Bone Remodeling (A Short Review of Modern Views). Curr Pharm Des. 2019, vol.25, no.6, pp. 663-669. doi: 10.2174/1381612825666190329153626

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Nasibov T.F., Gorokhova A.V., Porokhova E.D., Starosvetskaya A.A., Bariev U.A., Nosov V.E., Litvinova L.S., Avdeeva E.Y., Белоусов M.V., Khlusov I.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № 77 - 11525 от 04.01.2002.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies