ROLE OF TAS2R38 POLYMORPHISM IN RESPIRATORY DISEASES PATHOGENESIS



Cite item

Full Text

Abstract

AbstractMore and more new data, concerning extraoral bitter taste receptors (TAS2R), appear now. Current data on polymorphisms, expression patterns and form of TAS2R subtype 38 (TAS2R38), its molecular variants that differ in the degrees of sensitivity to ligands and their role in the pathogenesis of respiratory disorders are discussed in this review. The mechanism of signal transduction from taste receptors mediated by G-protein is shown. Participation of TAS2R38 in the local protective mechanisms in a ciliated epithelium of the respiratory tract and its activation by “quorum sensing” system molecules and its connection with the components of mucociliary clearance are presented. It has been shown that the action of the ligand on the TAS2R38 leads to the activation of NO synthase, followed by the production of nitric oxide (NO), which triggers a number of intracellular reactions leading to an increase in the rate of beating of the cilia of the ciliary epithelium, as well as having a direct antibacterial effect. TAS2R38 are also found on leukocytes, and its expression decreases with age, which can be considered as a component of the general aging of immunocompetent cells in the body. It is known that activation of TAS2R38 also enhances the phagocytic activity of macrophages, which is also mediated by the action of G-protein and cGMP. TAS2R receptors are also considered to be associated with allergic diseases, in particular – with bronchial asthma. A number of studies in groups of children with bronchial asthma revealed that the expression of most TAS2Rs was higher in children with severe bronchial asthma. Other studies have shown that patients with the eosinophilic variant of chronic rhinosinusitis have a higher levels of TAS2R38 expression in the upper respiratory tract compared to those with chronic rhinosinusitis without eosinophilia. To date, the functional significance of extraoral bitter taste receptors has not been fully studied. In the future, a large amount of research work remains to be done to finally understand the role of TAS2R in the pathogenesis of respiratory diseases.

About the authors

Mikhail Alexandrovitch Nyoma

Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia

Email: nyoma1@yandex.ru
ORCID iD: 0000-0002-1268-9795

Candidate of Medical Sciences, docent of Hospital Therapy department named after acad. M.V.Chernorutsky First Pavlov State Medical University of St. Petersburg 

Russian Federation, 197022, St. Petersburg, Leo Tolstoy st., 6-8

Rakhil Gennadievna Murkina

Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia

Email: mrg1327x@inbox.ru

6th year student of the First Pavlov State Medical University of St. Petersburg 

Russian Federation, 197022, St. Petersburg, Leo Tolstoy st., 6-8

Valery Nikolaevich Mineev

Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia

Author for correspondence.
Email: vnmineev@mail.ru
ORCID iD: 0000-0003-0352-8137

Doctor of Medical Sciences, Professor of Hospital Therapy department named after acad. M.V.Chernorutsky First Pavlov State Medical University of St. Petersburg

Russian Federation, 197022, St. Petersburg, Leo Tolstoy st., 6-8

References

  1. Meyerhof W., Batram C., Kuhn C., Brockhoff A., Chudoba E., Bufe B., Appendino G., Behrens M. The molecular receptive ranges of human TAS2R bitter taste receptors. Chem Senses. 2010; Feb;35(2):157-70. doi: 10.1093/chemse/bjp092.
  2. Douglas J.E., Lin C., Mansfield C.J., Arayata C.J., Cowart B.J., Spielman A.I., Adappa N.D., Palmer J.N., Cohen N.A., Reed D.R. Tissue-Dependent Expression of Bitter Receptor TAS2R38 mRNA. Chem Senses. 2019 Jan 1;44(1):33-40. doi: 10.1093/chemse/bjy066.
  3. Chandrashekar J., Mueller K.L., Hoon M.A., Adler E., Feng L., Guo W., Zuker C.S., Ryba N.J. T2Rs function as bitter taste receptors. Cell. 2000 Mar 17;100(6):703-11. doi: 10.1016/s0092-8674(00)80706-0.
  4. Meng, T., Nielsen, D.E. An Investigation of TAS2R38 Haplotypes, Dietary Intake, and Risk Factors for Chronic Disease in the Canadian Longitudinal Study on Aging. The Jourmal of Nutrition. 2023 Nov; 153(11): 3270-3279. doi: 10.1016/j.tjnut.2023.09.010.
  5. Campbell M.C., Ranciaro A., Froment A., Hirbo J., Omar S., Bodo J.M., Nyambo T., Lema G., Zinshteyn D., Drayna D., Breslin P.A., Tishkoff S.A.. Evolution of functionally diverse alleles associated with PTC bitter taste sensitivity in Africa. Mol Biol Evol. 2012 Apr;29(4):1141-53. doi: 10.1093/molbev/msr293.
  6. Bachmanov A.A., Beauchamp G.K. Taste receptor genes. Annu Rev Nutr. 2007;27:389-414. doi: 10.1146/annurev.nutr.26.061505.111329.
  7. Kawasumi T.; Takeno S.; Ishikawa C.; Takahara D.; Taruya T.; Takemoto K.; Hamamoto T.; Ishino T.; Ueda T. The Functional Diversity of Nitric Oxide Synthase Isoforms in Human Nose and Paranasal Sinuses: Contrasting Pathophysiological Aspects in Nasal Allergy and Chronic Rhinosinusitis. Int. J. Mol. Sci. 2021 Jul 15; 22(14): 7561. doi: 10.3390/jms.22147561.
  8. Maurer S., Wabnitz G.H., Kahle N.A., Stegmaier S., Prior B., Giese T., Gaida M.M., Samstag Y., Hänsch G.M. Tasting Pseudomonas aeruginosa Biofilms: Human Neutrophils Express the Bitter Receptor T2R38 as Sensor for the Quorum Sensing Molecule N-(3-Oxododecanoyl)-l-Homoserine Lactone. Front Immunol. 2015 Jul 24;6:369. doi: 10.3389/fimmu.2015.00369.
  9. Lee R.J., Xiong G., Kofonow J.M., Chen B., Lysenko A., Jiang P., Abraham V., Doghramji L., Adappa N.D., Palmer J.N., Kennedy D.W., Beauchamp G.K., Doulias P.T., Ischiropoulos H., Kreindler J.L., Reed D.R., Cohen N.A. T2R38 taste receptor polymorphisms underlie susceptibility to upper respiratory infection. J Clin Invest. 2012 Nov;122(11):4145-59. doi: 10.1172/JCI64240.
  10. Tran H.T.T., Herz C., Ruf P., Stetter R., Lamy E. Human T2R38 Bitter Taste Receptor Expression in Resting and Activated Lymphocytes. Front Immunol. 2018 Dec 11; 9:2949. doi: 10.3389/fimmu.2018.02949.
  11. Gopallawa I., Freund J.R., Lee R.J. Bitter taste receptors stimulate phagocytosis in human macrophages through calcium, nitric oxide, and cyclic-GMP signaling. Cell Mol Life Sci. 2021 Jan;78(1):271-286. doi: 10.1007/s00018-020-03494-y.
  12. Orsmark-Pietras C., James A., Konradsen J.R., Nordlund B., Söderhäll C., Pulkkinen V., Pedroletti C., Daham K., Kupczyk M., Dahlén B., Kere J., Dahlén S.E., Hedlin G., Melén E. Transcriptome analysis reveals upregulation of bitter taste receptors in severe asthmatics. Eur Respir J. 2013 Jul;42(1):65-78. doi: 10.1183/09031936.00077712.
  13. Takemoto K., Lomude L.S., Takeno S., Kawasumi T., Okamoto Y., Hamamoto T., Ishino T., Ando Y., Ishikawa C., Ueda T. Functional Alteration and Differential Expression of the Bitter Taste Receptor T2R38 in Human Paranasal Sinus in Patients with Chronic Rhinosinusitis. Int J Mol Sci. 2023 Feb 24;24(5):4499. doi: 10.3390/ijms24054499.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Murkina R.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № 77 - 11525 от 04.01.2002.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies