AUTOLOGOUS HEMATOPOIETIC STEM CELL TRANSPLANTATION (HSCT) FOR NEUROLOGICAL DISORDERS: A SYSTEMATIC REVIEW & META-ANALYSIS OF CLINICAL OUTCOMES AND COMPLICATIONS
- Authors: Awasthi S.1, Singh V.K.1, Jain S.K.2, Sharma S.3
-
Affiliations:
- Teerthanker Mahaveer Medical college and research centre
- Teerthanker Mahaveer Medical College and Research Centre
- TMMC&RC
- Section: REVIEWS
- Submitted: 07.04.2025
- Accepted: 18.07.2025
- URL: https://rusimmun.ru/jour/article/view/17222
- DOI: https://doi.org/10.46235/1028-7221-17222-AHS
- ID: 17222
Cite item
Full Text
Abstract
Introduction: Neurological disorders, including MS and pediatric neurodegenerative diseases, pose a significant global health burden with limited therapeutic options. Autologous HSCT has emerged as a promising intervention to halt disease progression, reduce disability, and modulate immune responses in the central nervous system. This systematic review and meta-analysis evaluate the clinical outcomes and safety of autologous HSCT in patients with neurological disorders.
Methods: Following PRISMA guidelines, we searched PubMed, Embase, Cochrane Library, and Web of Science for studies on autologous HSCT in neurological disorders. Included studies reported clinical outcomes (e.g., Expanded Disability Status Scale [EDSS] changes, progression-free survival [PFS]) and complications. Data were synthesized using random-effects meta-analyses to calculate standardized mean differences (SMD) for EDSS changes, pooled proportions for PFS and relapse-free survival, and treatment-related mortality (TRM) rates. Heterogeneity was assessed with I² statistics, and predictors of outcomes were explored via meta-regression and subgroup analyses.
Results: Fifteen studies (n=1,378 patients) were included, predominantly focusing on MS (relapsing-remitting, progressive, and aggressive subtypes). Autologous HSCT significantly reduced disability, with a pooled SMD in EDSS of -1.02 (95% CI: -1.42, -0.62; p < 0.01; I² = 88.9%). PFS was 73% (95% CI: 0.61–0.84; I² = 0%), and relapse-free survival in relapsing-remitting MS was 82% (95% CI: 0.70–0.92; I² = 5%). TRM was low at 2% (95% CI: 0.00–0.04; I² = 38.9%), with common adverse events including febrile neutropenia and infections. Younger age, shorter disease duration, and relapsing-remitting MS subtype predicted better outcomes (p < 0.05). Conditioning regimen influenced safety, with BEAM-based protocols showing lower TRM (p = 0.0049).
Conclusion: Autologous HSCT demonstrates significant efficacy in reducing disability and preventing disease progression in neurological disorders, particularly MS, with a favorable safety profile. However, high heterogeneity and limited controlled trials highlight the need for larger, randomized studies to confirm comparative efficacy against standard therapies and optimize patient selection and treatment protocols.
About the authors
Seema Awasthi
Teerthanker Mahaveer Medical college and research centre
Email: seemaawasthi285@gmail.com
India
Vinod Kumar Singh
Teerthanker Mahaveer Medical college and research centre
Email: drvinodkumarsingh85@gmail.com
India
Sanjeev Kumar Jain
Teerthanker Mahaveer Medical College and Research Centre
Email: jainsanjeevkumar77@gmail.com
ORCID iD: 0009-0003-6959-859X
India
Soniya Sharma
TMMC&RC
Author for correspondence.
Email: soniyasharma19922@gmail.com
India
References
- Feigin V., Nichols E., Alam S., Bannick M., Beghi E., Blake N.et al.. Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the global burden of disease study 2016. The Lancet Neurology 2019;18(5):459-480. https://doi.org/10.1016/s1474-4422(18)30499-x
- Ding C., Wu Y., Chen X., Chen Y., Wu Z., Lin Z.et al.. Global, regional, and national burden and attributable risk factors of neurological disorders: the global burden of disease study 1990–2019. Frontiers in Public Health 2022;10. https://doi.org/10.3389/fpubh.2022.952161
- Singh G., Kumar G., Rao N., Prasad K., Mathur P., Pandian J.et al.. The burden of neurological disorders across the states of india: the global burden of disease study 1990–2019. The Lancet Global Health 2021;9(8):e1129-e1144. https://doi.org/10.1016/s2214-109x(21)00164-9
- Tallawy H., Farghaly W., Rageh T., Shehata G., Metwaly N., Elftoh N.et al.. Epidemiology of major neurological disorders project in al kharga district, new valley, egypt. Neuroepidemiology 2010;35(4):291-297. https://doi.org/10.1159/000320240
- Gourie‐Devi M., Gururaj G., Satishchandra P., & Subbakrishna D.. Prevalence of neurological disorders in bangalore, india: a community-based study with a comparison between urban and rural areas. Neuroepidemiology 2004;23(6):261-268. https://doi.org/10.1159/000080090
- Premraj L., Kannapadi N., Briggs J., Seal S., Battaglini D., Fanning J.et al.. Mid and long-term neurological and neuropsychiatric manifestations of post-covid-19 syndrome: a meta-analysis. Journal of the Neurological Sciences 2022;434:120162. https://doi.org/10.1016/j.jns.2022.120162
- Misra S., Kolappa K., Prasad M., Radhakrishnan D., Thakur K., Solomon T.et al.. Frequency of neurologic manifestations in covid-19. Neurology 2021;97(23). https://doi.org/10.1212/wnl.0000000000012930
- Giussani G., Westenberg E., García‐Azorín D., Bianchi E., Khan A., Allegri R.et al.. Prevalence and trajectories of post-covid-19 neurological manifestations: a systematic review and meta-analysis. Neuroepidemiology 2024;58(2):120-133. https://doi.org/10.1159/000536352
- Cartier N., Hacein‐Bey‐Abina S., Bartholomae C., Veres G., Schmidt M., Kutschera I.et al.. Hematopoietic stem cell gene therapy with a lentiviral vector in x-linked adrenoleukodystrophy. Science 2009;326(5954):818-823. https://doi.org/10.1126/science.1171242
- Bali P., Lahiri D., Banik A., Nehru B., & Anand A.. Potential for stem cells therapy in alzheimer’s disease: do neurotrophic factors play critical role?. Current Alzheimer Research 2017;14(2):208-220. https://doi.org/10.2174/1567205013666160314145347
- Chang K., Lee J., & Suh Y.. Therapeutic potential of human adipose-derived stem cells in neurological disorders. Journal of Pharmacological Sciences 2014;126(4):293-301. https://doi.org/10.1254/jphs.14r10cp
- Gentner B., Visigalli I., Hiramatsu H., Lechman E., Ungari S., Giustacchini A.et al.. Identification of hematopoietic stem cell–specific mirnas enables gene therapy of globoid cell leukodystrophy. Science Translational Medicine 2010;2(58). https://doi.org/10.1126/scitranslmed.3001522
- Raymond G., Aubourg P., Paker A., Escolar M., Fischer A., Blanche S.et al.. Survival and functional outcomes in boys with cerebral adrenoleukodystrophy with and without hematopoietic stem cell transplantation. Biology of Blood and Marrow Transplantation 2019;25(3):538-548. https://doi.org/10.1016/j.bbmt.2018.09.036
- Eichler F., Duncan C., Musolino P., Orchard P., Oliveira S., Thrasher A.et al.. Hematopoietic stem-cell gene therapy for cerebral adrenoleukodystrophy. New England Journal of Medicine 2017;377(17):1630-1638. https://doi.org/10.1056/nejmoa1700554
- Qiao S., Liu Y., Han F., Guo M., Hou X., Ye K.et al.. An intelligent neural stem cell delivery system for neurodegenerative diseases treatment. Advanced Healthcare Materials 2018;7(12). https://doi.org/10.1002/adhm.201800080
- Biffi A., Capotondo A., Fasano S., Carro U., Marchesini S., Azuma H.et al.. Gene therapy of metachromatic leukodystrophy reverses neurological damage and deficits in mice. Journal of Clinical Investigation 2006;116(11):3070-3082. https://doi.org/10.1172/jci28873
- Awaya T., Kato T., Niwa A., Hiramatsu H., Umeda K., Watanabe K.et al.. Successful cord blood transplantation using a reduced‐intensity conditioning regimen for advanced childhood‐onset cerebral adrenoleukodystrophy. Pediatric Transplantation 2011;15(6). https://doi.org/10.1111/j.1399-3046.2009.01188.x
- Copelan E.. Hematopoietic stem-cell transplantation. New England Journal of Medicine 2006;354(17):1813-1826. https://doi.org/10.1056/nejmra052638
- Brodszki N., Svensson M., Kuilenburg A., Meijer J., Zoetekouw L., Truedsson L.et al.. Novel genetic mutations in the first swedish patient with purine nucleoside phosphorylase deficiency and clinical outcome after hematopoietic stem cell transplantation with hla-matched unrelated donor. Jimd Reports 2015:83-89. https://doi.org/10.1007/8904_2015_444
- Rubin J., Wide K., Remberger M., & Gustafsson B.. Acute neurological complications after hematopoietic stem cell transplantation in children. Pediatric Transplantation 2004;9(1):62-67. https://doi.org/10.1111/j.1399-3046.2004.00277.x
- Weber C., Schaper J., Tibussek D., Adams O., MacKenzie C., Dilloo D.et al.. Diagnostic and therapeutic implications of neurological complications following paediatric haematopoietic stem cell transplantation. Bone Marrow Transplantation 2007;41(3):253-259. https://doi.org/10.1038/sj.bmt.1705905
- Azık F., Erdem A., Tavil B., Bayram C., Tunç B., & Uçkan D.. Neurological complications after allogeneic hematopoietic stem cell transplantation in children, a single center experience. Pediatric Transplantation 2014;18(4):405-411. https://doi.org/10.1111/petr.12265
- Mancardi GL, Sormani MP, Gualandi F, Saiz A, Carreras E, Merelli E, Donelli A, Lugaresi A, Di Bartolomeo P, Rottoli MR, Rambaldi A. Autologous hematopoietic stem cell transplantation in multiple sclerosis: a phase II trial. Neurology. 2015 Mar 10;84(10):981-8.
- Burt RK, Cohen BA, Russell E, Spero K, Joshi A, Oyama Y, Karpus WJ, Luo K, Jovanovic B, Traynor A, Karlin K. Hematopoietic stem cell transplantation for progressive multiple sclerosis: failure of a total body irradiation–based conditioning regimen to prevent disease progression in patients with high disability scores. Blood. 2003 Oct 1;102(7):2373-8.
- Nash RA, Bowen JD, McSweeney PA, Pavletic SZ, Maravilla KR, Park MS, et al. High-dose immunosuppressive therapy and autologous peripheral blood stem cell transplantation for severe multiple sclerosis. Blood. 2003;102:2364–72. https://doi.org/10. 1182/blood-2002-12-3908.
- Saccardi R, Kozak T, Bocelli-Tyndall C, Fassas A, Kazis A, Havrdova E, Carreras E, Saiz A, Löwenberg BT, te Boekhorst PA, Gualandi F. Autologous stem cell transplantation for progressive multiple sclerosis: update of the European Group for Blood and Marrow Transplantation autoimmune diseases working party database. Multiple Sclerosis Journal. 2006 Nov;12(6):814-23.
- Ni XS, Ouyang J, Zhu WH, Wang C, Chen B. Autologous hematopoietic stem cell transplantation for progressive multiple sclerosis: report of efficacy and safety at three yr of follow up in 21 patients. Clinical transplantation. 2006 Jul;20(4):485-9.
- Krasulová E, Trněný M, Kozák T, Vacková B, Pohlreich D, Kemlink D, Kobylka P, Kovářová I, Lhotáková P, Havrdová E. High-dose immunoablation with autologous haematopoietic stem cell transplantation in aggressive multiple sclerosis: a single centre 10-year experience. Multiple Sclerosis Journal. 2010 Jun;16(6):685-93.
- Burt RK, Loh Y, Cohen B, Stefosky D, Balabanov R, Katsamakis G, Oyama Y, Russell EJ, Stern J, Muraro P, Rose J. Autologous non-myeloablative haemopoietic stem cell transplantation in relapsing-remitting multiple sclerosis: a phase I/II study. The Lancet Neurology. 2009 Mar 1;8(3):244-53.
- Moore JJ, Massey JC, Ford CD, Khoo ML, Zaunders JJ, Hendrawan K, Barnett Y, Barnett MH, Kyle KA, Zivadinov R, Ma KC. Prospective phase II clinical trial of autologous haematopoietic stem cell transplant for treatment refractory multiple sclerosis. Journal of Neurology, Neurosurgery & Psychiatry. 2019 May 1;90(5):514-21.
- Burman J, Iacobaeus E, Svenningsson A, Lycke J, Gunnarsson M, Nilsson P, et al. Autologous haematopoietic stem cell transplantation for aggressive multiple sclerosis: the Swedish experience. J Neurol, Neurosurg, Psychiatry. 2014;85:1116–21. https://doi.org/ 10.1136/jnnp-2013-307207
- Shevchenko JL, Kuznetsov AN, Ionova TI, Melnichenko VY, Fedorenko DA, Kurbatova KA, et al. Long-term outcomes of autologous hematopoietic stem cell transplantation with reducedintensity conditioning in multiple sclerosis: physician’s and patient’s perspectives. Ann Hematol. 2015;94:1149–57. https:// doi.org/10.1007/s00277-015-2337-8
- Atkins HL, Bowman M, Allan D, Anstee G, Arnold DL, Bar-Or A, et al. Immunoablation and autologous haemopoietic stem-cell transplantation for aggressive multiple sclerosis: a multicentre single-group phase 2 trial. Lancet. 2016;388:576–85. https://doi. org/10.1016/s0140-6736(16)30169-6
- Muraro PA, Pasquini M, Atkins HL, Bowen JD, Farge D, Fassas A, et al. Long-term outcomes after autologous hematopoietic stem cell transplantation for multiple sclerosis. JAMA Neurol. 2017; 74:459–69. https://doi.org/10.1001/jamaneurol.2016.5867.
- Nash RA, Hutton GJ, Racke MK, Popat U, Devine SM, Steinmiller KC, et al. High-dose immunosuppressive therapy and autologous HCT for relapsing-remitting MS. Neurology. 2017;88:842–52. https://doi.org/10.1212/wnl.0000000000003660.
- Ruiz-Arguelles GJ, Olivares-Gazca JC, Olivares-Gazca M, LeonPena AA, Murrieta-Alvarez I, Cantero-Fortiz Y et al. Self-reported changes in the expanded disability status scale score in patients with multiple sclerosis after autologous stem cell transplants: realworld data from a single center. 2019;198:351–8. https://doi.org/ 10.1111/cei.13358.
- Tolf A, Fagius J, Carlson K, Akerfeldt T, Granberg T, Larsson EM et al. Sustained remission in multiple sclerosis after hematopoietic stem cell transplantation. 2019;140:320–7. https://doi.org/ 10.1111/ane.13147.
- Burt RK, Balabanov R, Burman J, Sharrack B, Snowden JA, Oliveira MC, Fagius J, Rose J, Nelson F, Barreira AA, Carlson K. Effect of nonmyeloablative hematopoietic stem cell transplantation vs continued disease-modifying therapy on disease progression in patients with relapsing-remitting multiple sclerosis: a randomized clinical trial. Jama. 2019 Jan 15;321(2):165-74.
- Gao F., Chiu S., Motan D., Zhang Z., Chen L., Ji H.et al.. Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death and Disease 2016;7(1):e2062-e2062. https://doi.org/10.1038/cddis.2015.327
- Yagi H., Soto–Gutiérrez A., Parekkadan B., Kitagawa Y., Tompkins R., Kobayashi N.et al.. Mesenchymal stem cells: mechanisms of immunomodulation and homing. Cell Transplantation 2010;19(6-7):667-679. https://doi.org/10.3727/096368910x508762
- Sharrack B., Saccardi R., Alexander T., Badoglio M., Burman J., Farge D.et al.. Autologous haematopoietic stem cell transplantation and other cellular therapy in multiple sclerosis and immune-mediated neurological diseases: updated guidelines and recommendations from the ebmt autoimmune diseases working party (adwp) and the joint accreditation committee of ebmt and isct (jacie). Bone Marrow Transplantation 2019;55(2):283-306. https://doi.org/10.1038/s41409-019-0684-0
- Porrata L., Gertz M., Inwards D., Litzow M., Lacy M., Tefferi A.et al.. Early lymphocyte recovery predicts superior survival after autologous hematopoietic stem cell transplantation in multiple myeloma or non-hodgkin lymphoma. Blood 2001;98(3):579-585. https://doi.org/10.1182/blood.v98.3.579
- Rueff J., Medinger M., Heim D., Passweg J., & Stern M.. Lymphocyte subset recovery and outcome after autologous hematopoietic stem cell transplantation for plasma cell myeloma. Biology of Blood and Marrow Transplantation 2014;20(6):896-899. https://doi.org/10.1016/j.bbmt.2014.03.007
- Jeong S., Chu K., Jung K., Kim S., Kim M., & Roh J.. Human neural stem cell transplantation promotes functional recovery in rats with experimental intracerebral hemorrhage. Stroke 2003;34(9):2258-2263. https://doi.org/10.1161/01.str.0000083698.20199.1f
- Li Z., Dong X., Tian M., Liu C., Wang K., Li L.et al.. Stem cell-based therapies for ischemic stroke: a systematic review and meta-analysis of clinical trials. Stem Cell Research & Therapy 2020;11(1). https://doi.org/10.1186/s13287-020-01762-z
- Squillaro T., Peluso G., & Galderisi U.. Clinical trials with mesenchymal stem cells: an update. Cell Transplantation 2016;25(5):829-848. https://doi.org/10.3727/096368915x689622
Supplementary files
