PHYSICAL EXERCISE IS THE BEST THERAPY IN REDUCING INTERLEUKIN-6 LEVELS AS AN INFLAMMATORY MEDIATOR: A SYSTEMATIC REVIEW



Cite item

Full Text

Abstract

Abstract

Background. Unhealthy lifestyles such as consuming less nutritious foods, lack of physical activity trigger accelerated aging. Aging occurs due to the accumulation of inflammation in the body such as increased levels of interleukin-6. Interleukin-6 (IL-6) is a major pro-inflammatory cytokine involved in the pathogenesis of various chronic diseases, including cardiovascular disorders, diabetes, and autoimmune conditions. Increased levels of IL-6 are associated with systemic inflammation and poor health outcomes. In recent decades, physical exercise has received attention not only for its role in improving fitness but also as a non-pharmacological intervention to modulate the immune response. Currently, it is not well known how exercise affects the IL-6 response. The underlying mechanisms are also still not clearly understood. The physiological response of exercise to IL-6 is important to know and the underlying molecular mechanisms must be clearly understood in order to understand the stages that occur related to the effect of exercise on increasing IL-6.

Objective. The purpose of this study was to determine the mechanism by which physical activity lowers interleukin-6 levels.

Materials and methods. In this systematic review study, we searched through literature databases including Science Direct, Web of Science, MEDLINE-Pubmed, and Scopus. Papers published over the past five years that addressed interleukin-6 and physical exercise met as inclusion criteria. The Web of Science, Pubmed, and Science Direct databases were used to locate 126 published papers in total. For this systematic review, ten papers that met the inclusion criteria were selected and examined. Standard operating procedures were evaluated in this study using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA).

Results. Based on the results of this systematic study, it is evident that chronic exercise reduces IL-6 levels. Immediately after acute physical exercise, IL-6 levels increased. However, there was a downward trend in IL-6 levels during chronic physical exercise.

Conclusions. Chronic and regular exercise has been shown to reduce IL-6 levels. as a marker of inflammation. If IL-6 can be suppressed through exercise, inflammation will decrease, thus inhibiting aging which is triggered by the accumulation of inflammation.

 

About the authors

Novadri Ayubi

Universitas Negeri Surabaya, Surabaya, Indonesia

Email: novadriayubi@unesa.ac.id
ORCID iD: 0000-0002-5196-6636
Scopus Author ID: 57537497000

Academic degree            : Doctoral

Academic title                         : Dr.

Indonesia

Junian Cahyanto Wibawa

STKIP PGRI Trenggalek, Trenggalek, Indonesia

Email: juniancahyanto96@stkippgritrenggalek.ac.id
ORCID iD: 0000-0002-4667-5981
Scopus Author ID: 59006110400

Academic degree            : Master

Academic title                         : M.Kes.

Indonesia

Joseph Lobo

Bulacan State University, Malolos, Philippines

Email: joseph.lobo@bulsu.edu.ph
ORCID iD: 0000-0002-2553-467X
Scopus Author ID: 58640251600

Academic degree            : Doctoral

Academic title                         : Ph.D

Philippines

Anton Komaini

Universitas Negeri Padang, Padang, Indonesia

Email: antonkomaini@fik.unp.ac.id
ORCID iD: 0000-0002-2955-0175
Scopus Author ID: 57193789399
Indonesia

Cyuzuzo Callixte

University of Rwanda, Butare, Rwanda

Email: c.cyuzuzo@ur.ac.rw
ORCID iD: 0000-0002-9137-5515
Scopus Author ID: 57804750000

Academic degree            : Master

Academic title                         : M.Sc.

Rwanda

Ainun Zulfikar Rizki

Universitas Negeri Surabaya, Surabaya, Indonesia

Email: ainun.20015@mhs.unesa.ac.id
ORCID iD: 0000-0003-0249-4908
Scopus Author ID: 57609066200

Academic degree            : Master

Academic title                         : M.Pd.

Indonesia

Alvin Afandi

Universitas Negeri Surabaya

Email: alvinafandi09@gmail.com
ORCID iD: 0009-0009-7161-3852
Scopus Author ID: 59538274900

Academic degree            : Master

Academic title                         : M.Pd.

Indonesia

Muhamad Ichsan Sabillah

Universitas Negeri Surabaya, Surabaya, Indonesia

Author for correspondence.
Email: muhamadsabillah@unesa.ac.id
ORCID iD: 0000-0001-6081-8590
Scopus Author ID: 57795103100

Academic degree            : Doctoral

Academic title                         : Dr.

Indonesia

References

  1. Amin, M. N., El-Mowafy, M., Mobark, A., Abass, N., & Elgaml, A. (2021). Exercise-induced downregulation of serum interleukin-6 and tumor necrosis factor-alpha in Egyptian handball players. Saudi Journal of Biological Sciences, 28(1), 724–730. https://doi.org/10.1016/j.sjbs.2020.10.065
  2. Avdhoot Pandit. (2023). Lifestyle disorders: An emerging health problem (causes and prevention from nutritional perspective). Research Journal of Family, Community, and Consumer Sciences, 11(2), 11–14.
  3. Barbé-Tuana, F., Funchal, G., Schmitz, C. R. R., Maurmann, R. M., & Bauer, M. E. (2020). The interplay between immunosenescence and age-related diseases. Seminars in Immunopathology, 42(5), 545–557. https://doi.org/10.1007/s00281-020-00806-z
  4. Barnes, P. J. (2020). Oxidative stress-based therapeutics in COPD. Redox Biology, 33(January), 101544. https://doi.org/10.1016/j.redox.2020.101544
  5. Borsa, M., Barandun, N., Gräbnitz, F., Barnstorf, I., Baumann, N. S., Pallmer, K., Baumann, S., Stark, D., Balaz, M., Oetiker, N., Wagen, F., Wolfrum, C., Simon, A. K., Joller, N., Barral, Y., Spörri, R., & Oxenius, A. (2021). Asymmetric cell division shapes naive and virtual memory T-cell immunity during ageing. Nature Communications, 12(1), 1–12. https://doi.org/10.1038/s41467-021-22954-y
  6. Chaki, B., Pal, S., Chattopadhyay, S., & Bandyopadhyay, A. (2024). Influence of puberty on high intensity exercise induced skeletal muscle damage and inflammatory response in sedentary boys. Sports Medicine and Health Science, March. https://doi.org/10.1016/j.smhs.2024.03.002
  7. Chen, L., Wang, S., Wang, Y., Zhang, W., Ma, K., Hu, C., Zhu, H., Liang, S., Liu, M., & Xu, N. (2018). IL-6 influences the polarization of macrophages and the formation and growth of colorectal tumor. Oncotarget, 9(25), 17443–17454. https://doi.org/10.18632/oncotarget.24734
  8. Chen, P. W., Hsu, C. C., Lai, L. F., Chi, C. P., & Yu, S. H. (2022). Effects of Hypoxia–Hyperoxia Preconditioning on Indicators of Muscle Damage After Acute Resistance Exercise in Male Athletes. Frontiers in Physiology, 13(April). https://doi.org/10.3389/fphys.2022.824210
  9. Chow, L. S., Gerszten, R. E., Taylor, J. M., Pedersen, B. K., van Praag, H., Trappe, S., Febbraio, M. A., Galis, Z. S., Gao, Y., Haus, J. M., Lanza, I. R., Lavie, C. J., Lee, C. H., Lucia, A., Moro, C., Pandey, A., Robbins, J. M., Stanford, K. I., Thackray, A. E., … Snyder, M. P. (2022). Exerkines in health, resilience and disease. Nature Reviews Endocrinology, 18(5), 273–289. https://doi.org/10.1038/s41574-022-00641-2
  10. Cortes-Canteli, M., & Iadecola, C. (2020). Alzheimer’s Disease and Vascular Aging: JACC Focus Seminar. Journal of the American College of Cardiology, 75(8), 942–951. https://doi.org/10.1016/j.jacc.2019.10.062
  11. Dantas, W. S., Neves, W. das, Gil, S., Barcellos, C. R. G., Rocha, M. P., de Sá-Pinto, A. L., Roschel, H., & Gualano, B. (2019). Exercise-induced anti-inflammatory effects in overweight/obese women with polycystic ovary syndrome. Cytokine, 120(April), 66–70. https://doi.org/10.1016/j.cyto.2019.04.006
  12. Docherty, S., Harley, R., McAuley, J. J., Crowe, L. A. N., Pedret, C., Kirwan, P. D., Siebert, S., & Millar, N. L. (2022). The effect of exercise on cytokines: implications for musculoskeletal health: a narrative review. BMC Sports Science, Medicine and Rehabilitation, 14(1), 1–14. https://doi.org/10.1186/s13102-022-00397-2
  13. Forcina, L., Cosentino, M., & Musarò, A. (2020). Mechanisms regulating muscle regeneration: Insights into the interrelated and time-dependent phases of tissue healing. Cells, 9(5). https://doi.org/10.3390/cells9051297
  14. Forcina, L., Franceschi, C., & Musarò, A. (2022a). The hormetic and hermetic role of IL-6. Ageing Research Reviews, 80(June). https://doi.org/10.1016/j.arr.2022.101697
  15. Forcina, L., Franceschi, C., & Musarò, A. (2022b). The hormetic and hermetic role of IL-6. Ageing Research Reviews, 80(July). https://doi.org/10.1016/j.arr.2022.101697
  16. Goj, T., Hoene, M., Fritsche, L., Schneeweiss, P., Machann, J., Petrera, A., Hauck, S. M., Fritsche, A., Birkenfeld, A. L., Peter, A., Heni, M., Niess, A. M., Moller, A., & Weigert, C. (2023). The Acute Cytokine Response to 30-Minute Exercise Bouts Before and After 8-Week Endurance Training in Individuals With Obesity. The Journal of Clinical Endocrinology and Metabolism, 108(4), 865–875. https://doi.org/10.1210/clinem/dgac623
  17. Gómez-Rubio, P., & Trapero, I. (2019). The Effects of Exercise on IL-6 Levels and Cognitive Performance in Patients with Schizophrenia. Diseases, 7(1), 11. https://doi.org/10.3390/diseases7010011
  18. Guo, J., Huang, X., Dou, L., Yan, M., Shen, T., Tang, W., & Li, J. (2022). Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduction and Targeted Therapy, 7(1). https://doi.org/10.1038/s41392-022-01251-0
  19. Hernandez Cordero, A. I., Yang, C. X., Yang, J., Horvath, S., Shaipanich, T., MacIsaac, J., Lin, D. T. S., Kobor, M. S., Guillemi, S., Harris, M., Lam, W., Lam, S., Montaner, J., Paul Man, S. F., Sin, D. D., & Leung, J. M. (2022). Airway Aging and Methylation Disruptions in HIV-associated Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 206(2), 150–160. https://doi.org/10.1164/rccm.202106-1440OC
  20. Islam, H., Tsai, S. H., Figueiredo, C., Jackson, G. S., Marcotte-Chénard, A., Bosak, J., Moreno-Cabañas, A., Lira, F. S., & Little, J. P. (2024). Direct assessment of leukocyte signalling and cytokine secretion reveals exercise intensity-dependent reductions in anti-inflammatory cytokine action. Journal of Physiology, 602(12), 2717–2736. https://doi.org/10.1113/JP286228
  21. Jenkins, D. E., Sreenivasan, D., Carman, F., Samal, B., Eiden, L. E., & Bunn, S. J. (2016). Interleukin-6-mediated signaling in adrenal medullary chromaffin cells. Journal of Neurochemistry, 139(6), 1138–1150. https://doi.org/10.1111/jnc.13870
  22. Karavasiloglou, N., Thompson, A. S., Pestoni, G., Knuppel, A., Papier, K., Cassidy, A., Kühn, T., & Rohrmann, S. (2023). Adherence to the EAT-Lancet reference diet is associated with a reduced risk of incident cancer and all-cause mortality in UK adults. One Earth, 6(12), 1726–1734. https://doi.org/10.1016/j.oneear.2023.11.002
  23. Katayama, K., & Saito, M. (2019). Muscle sympathetic nerve activity during exercise. Journal of Physiological Sciences, 69(4), 589–598. https://doi.org/10.1007/s12576-019-00669-6
  24. Kolasa-Trela, R., Konieczynska, M., Bazanek, M., & Undas, A. (2017). Specific changes in circulating cytokines and growth factors induced by exercise stress testing in asymptomatic aortic valve stenosis. PLoS ONE, 12(3), 1–14. https://doi.org/10.1371/journal.pone.0173787
  25. Kooti, M., Soori, R., Shabkhiz, F., & Pournemati, P. (2022). The effect of three month combined training on the serum levels of interleukin-6 and C-reactive protein in sedentary obese women. Journal of Basic Research in Medical Sciences, 9(4), 34–44. https://search.ebscohost.com/login.aspx?direct=true&db=ccm&AN=164323982&lang=pt-pt&site=ehost-live
  26. Kruk, J., Aboul-Enein, H. Y., Kładna, A., & Bowser, J. E. (2019). Oxidative stress in biological systems and its relation with pathophysiological functions: the effect of physical activity on cellular redox homeostasis. Free Radical Research, 53(5), 497–521. https://doi.org/10.1080/10715762.2019.1612059
  27. L. Ferreira, V., H.L. Borba, H., de F. Bonetti, A., P. Leonart, L., & Pontarolo, R. (2019). Cytokines and Interferons: Types and Functions. Autoantibodies and Cytokines. https://doi.org/10.5772/intechopen.74550
  28. Lauritzen, H. P. M. M., Brandauer, J., Schjerling, P., Koh, H. J., Treebak, J. T., Hirshman, M. F., Galbo, H., & Goodyear, L. J. (2013). Contraction and AICAR stimulate IL-6 vesicle depletion from skeletal muscle fibers in vivo. Diabetes, 62(9), 3081–3092. https://doi.org/10.2337/db12-1261
  29. Lin, C., Li, D., Wang, X., & Yang, S. (2024). Chronic exercise interventions for executive function in overweight children: a systematic review and meta-analysis. Frontiers in Sports and Active Living, 6(February), 1–11. https://doi.org/10.3389/fspor.2024.1336648
  30. Liu, T., Zhang, L., Joo, D., & Sun, S. C. (2017). NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy, 2(March). https://doi.org/10.1038/sigtrans.2017.23
  31. Makiel, K., Suder, A., Targosz, A., Maciejczyk, M., & Haim, A. (2023). Exercise-Induced Alternations of Adiponectin, Interleukin-8 and Indicators of Carbohydrate Metabolism in Males with Metabolic Syndrome. Biomolecules, 13(5). https://doi.org/10.3390/biom13050852
  32. McDougle, J. M., Mangine, G. T., Townsend, J. R., Jajtner, A. R., & Feito, Y. (2023). Acute physiological outcomes of high-intensity functional training: a scoping review. PeerJ, 11, 1–53. https://doi.org/10.7717/peerj.14493
  33. Metcalfe, R. D., Putoczki, T. L., & Griffin, M. D. W. (2020). Structural Understanding of Interleukin 6 Family Cytokine Signaling and Targeted Therapies: Focus on Interleukin 11. Frontiers in Immunology, 11(July), 1–25. https://doi.org/10.3389/fimmu.2020.01424
  34. Nash, D., Hughes, M. G., Butcher, L., Aicheler, R., Smith, P., Cullen, T., & Webb, R. (2023). IL-6 signaling in acute exercise and chronic training: Potential consequences for health and athletic performance. Scandinavian Journal of Medicine and Science in Sports, 33(1), 4–19. https://doi.org/10.1111/sms.14241
  35. Olson, E. N., & Williams, R. S. (2000). Calcineurin signaling and muscle remodeling. Cell, 101(7), 689–692. https://doi.org/10.1016/S0092-8674(00)80880-6
  36. Orange, S. T., Leslie, J., Ross, M., Mann, D. A., & Wackerhage, H. (2023). The exercise IL-6 enigma in cancer. Trends in Endocrinology and Metabolism, 34(11), 749–763. https://doi.org/10.1016/j.tem.2023.08.001
  37. Ostrowski, K., Hermann, C., Bangash, A., Schjerling, P., Nielsen, J. N., & Pedersen, B. K. (1998). A trauma-like elevation of plasma cytokines in humans in response to treadmill running. Journal of Physiology, 513(3), 889–894. https://doi.org/10.1111/j.1469-7793.1998.889ba.x
  38. Piccirillo, R. (2019). Exercise-induced myokines with therapeutic potential for muscle wasting. Frontiers in Physiology, 10(MAR). https://doi.org/10.3389/fphys.2019.00287
  39. Proschinger, S., Schenk, A., Weßels, I., Donath, L., Rappelt, L., Metcalfe, A. J., & Zimmer, P. (2023). Intensity- and time-matched acute interval and continuous endurance exercise similarly induce an anti-inflammatory environment in recreationally active runners: focus on PD-1 expression in Tregs and the IL-6/IL-10 axis. European Journal of Applied Physiology, 123(11), 2575–2584. https://doi.org/10.1007/s00421-023-05251-y
  40. Rastogi, C., Rube, H. T., Kribelbauer, J. F., Crocker, J., Loker, R. E., Martini, G. D., Laptenko, O., Freed-Pastor, W. A., Prives, C., Stern, D. L., Mann, R. S., & Bussemaker, H. J. (2021). Counteracting age-related VEGF signaling insufficiency promotes healthy aging and extends life span. Science, 373(6554), E3692–E3701. https://doi.org/10.1126/science.abc8479
  41. Recchia, F., Leung, C. K., Yu, A. P., Leung, W., Yu, D. J., Fong, D. Y., Montero, D., Lee, C. H., Wong, S. H. S., & Siu, P. M. (2023). Dose-response effects of exercise and caloric restriction on visceral adiposity in overweight and obese adults: a systematic review and meta-analysis of randomised controlled trials. British Journal of Sports Medicine, 57(16), 1035–1041. https://doi.org/10.1136/bjsports-2022-106304
  42. Reihmane, D., & Dela, F. (2014). Interleukin-6: Possible biological roles during exercise. European Journal of Sport Science, 14(3), 242–250. https://doi.org/10.1080/17461391.2013.776640
  43. Rodrigues, L. P., Teixeira, V. R., Alencar-Silva, T., Simonassi-Paiva, B., Pereira, R. W., Pogue, R., & Carvalho, J. L. (2021). Hallmarks of aging and immunosenescence: Connecting the dots. Cytokine and Growth Factor Reviews, 59(January), 9–21. https://doi.org/10.1016/j.cytogfr.2021.01.006
  44. Sabaratnam, R., Pedersen, A. J. T., Kristensen, J. M., Handberg, A., Wojtaszewski, J. F. P., & Højlund, K. (2018). Intact regulation of muscle expression and circulating levels of myokines in response to exercise in patients with type 2 diabetes. Physiological Reports, 6(12), 1–12. https://doi.org/10.14814/phy2.13723
  45. Santoro, A., Bientinesi, E., & Monti, D. (2021). Immunosenescence and inflammaging in the aging process: age-related diseases or longevity? Ageing Research Reviews, 71(May), 101422. https://doi.org/10.1016/j.arr.2021.101422
  46. Santoro, A., Martucci, M., Conte, M., Capri, M., Franceschi, C., & Salvioli, S. (2020). Inflammaging, hormesis and the rationale for anti-aging strategies. Ageing Research Reviews, 64(June), 101142. https://doi.org/10.1016/j.arr.2020.101142
  47. Shamsnia, E., Matinhomaee, H., Azarbayjani, M. A., & Peeri, M. (2023). The Effect of Aerobic Exercise on Oxidative Stress in Skeletal Muscle Tissue: A Narrative Review. Gene, Cell and Tissue, 10(4). https://doi.org/10.5812/gct-131964
  48. Soares, V., de Avelar, I. S., Venâncio, P. E. M., Pires-Oliveira, D. A. A., Silva, P. H. de A., Borges, A. R., Fonseca, G. P. E. F., & Noll, M. (2020). Acute changes in interleukin-6 level during four days of long-distance walking. Journal of Inflammation Research, 13, 871–878. https://doi.org/10.2147/JIR.S281113
  49. Steensberg, A., Fischer, C. P., Keller, C., Møller, K., & Pedersen, B. K. (2003). IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. American Journal of Physiology - Endocrinology and Metabolism, 285(2 48-2), 433–437. https://doi.org/10.1152/ajpendo.00074.2003
  50. Steensberg, A., Keller, C., Hillig, T., Frøsig, C., Wojtaszewski, J. F. P., Pedersen, B. K., Pilegaard, H., & Sander, M. (2007). Nitric oxide production is a proximal signaling event controlling exercise‐induced mRNA expression in human skeletal muscle. The FASEB Journal, 21(11), 2683–2694. https://doi.org/10.1096/fj.06-7477com
  51. Suzuki, K., Tominaga, T., Ruhee, R. T., & Ma, S. (2020). Characterization and modulation of systemic inflammatory response to exhaustive exercise in relation to oxidative stress. Antioxidants, 9(5). https://doi.org/10.3390/antiox9050401
  52. Tan, B. L., Norhaizan, M. E., Liew, W. P. P., & Rahman, H. S. (2018). Antioxidant and oxidative stress: A mutual interplay in age-related diseases. Frontiers in Pharmacology, 9(OCT), 1–28. https://doi.org/10.3389/fphar.2018.01162
  53. Toft, A. D., Falahati, A., & Steensberg, A. (2011). Source and kinetics of interleukin-6 in humans during exercise demonstrated by a minimally invasive model. European Journal of Applied Physiology, 111(7), 1351–1359. https://doi.org/10.1007/s00421-010-1755-5
  54. Tu, H., & Li, Y. L. (2023). Inflammation balance in skeletal muscle damage and repair. Frontiers in Immunology, 14(January), 1–14. https://doi.org/10.3389/fimmu.2023.1133355
  55. Villar-Fincheira, P., Paredes, A. J., Hernández-Díaz, T., Norambuena-Soto, I., Cancino-Arenas, N., Sanhueza-Olivares, F., Contreras-Briceño, F., Mandiola, J., Bruneau, N., García, L., Ocaranza, M. P., Troncoso, R., Gabrielli, L., & Chiong, M. (2021). Soluble Interleukin-6 Receptor Regulates Interleukin-6-Dependent Vascular Remodeling in Long-Distance Runners. Frontiers in Physiology, 12(October), 1–12. https://doi.org/10.3389/fphys.2021.722528
  56. Villar-Fincheira, P., Sanhueza-Olivares, F., Norambuena-Soto, I., Cancino-Arenas, N., Hernandez-Vargas, F., Troncoso, R., Gabrielli, L., & Chiong, M. (2021). Role of Interleukin-6 in Vascular Health and Disease. Frontiers in Molecular Biosciences, 8(March), 1–11. https://doi.org/10.3389/fmolb.2021.641734
  57. Wang, Q., & Zhou, W. (2021). Roles and molecular mechanisms of physical exercise in cancer prevention and treatment. Journal of Sport and Health Science, 10(2), 201–210. https://doi.org/10.1016/j.jshs.2020.07.008
  58. Xu, Y., Liu, X., Tsuji, K., Hamaoka, T., & Tabata, I. (2024). Oxygen uptake during the last bouts of exercise incorporated into high-intensity intermittent cross-exercise exceeds the V˙ O2max of the same exercise mode. Sports Medicine and Health Science, 6(1), 63–69. https://doi.org/10.1016/j.smhs.2024.01.002
  59. Yan, M., Sun, S., Xu, K., Huang, X., Dou, L., Pang, J., Tang, W., Shen, T., & Li, J. (2021). Cardiac Aging: From Basic Research to Therapeutics. Oxidative Medicine and Cellular Longevity, 2021. https://doi.org/10.1155/2021/9570325

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Ayubi N., Wibawa J.C., Lobo J., Komaini A., Callixte C., Rizki A.Z., Afandi A., Sabillah M.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № 77 - 11525 от 04.01.2002.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies