HOMEOSTATIC PROLIFERATION: FROM HEALTH TO PATHOLOGY

Cover Page

Cite item

Full Text

Abstract

In this review, we summarized contemporary knowledge about homeostatic maintenance and homeostatic proliferation of effector and regulatory T-cells, which are two main branches of the immune system that provide immune equilibrium and tolerance. Homeostatic proliferation is a normal physiological process caused by lymphopenia to maintain a constant level of T-cells in the periphery, but sometimes it may acquire pathological traits. Here we will discuss mechanisms of positive and negative influences on immunity during homeostatic proliferation, which may arise in different conditions. We supposed here, that the main of these conditions are decreased thymic output and deep lymphopenia, which lead to fast expansion of T-effectors with high-affinity T-cell receptor to self-antigens, and to inhibitory impacts on T-regulatory lymphocytes by increased levels of homeostatic cytokines that eventually raises a risk of development different autoimmune processes.

About the authors

D. V. Shevyrev

Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology

Author for correspondence.
Email: dr.daniil25@mail.ru

PhD student, laboratory of clinical immunopathology

630099 Novosibirsk, Yadrintsevskaya st.14

Russian Federation

V. P. Tereshchenko

Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology

Email: fake@neicon.ru

PhD student, laboratory of molecular immunology

Novosibirsk

Russian Federation

V. A. Kozlov

Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology

Email: fake@neicon.ru

Full Member of the Russian Academy of Sciences, doctor of medical sciences, professor

Novosibirsk Russian Federation

References

  1. Jerne N.K. Towards a Network Theory of the Immune System, Ann. Immunol. 1974, 125C, 373–389.
  2. Sprent J., Tough D.F. Lymphocyte life-span and memory. Science 1994, 265: 1395–1400.
  3. Jamieson B.D., Douek D.C., S. Killian L.E., Hultin D.D. Scripture-Adams, Giorgi J.V., Marelli D., Koup R.A., Zack J.A. Generation of functional thymocytes in the human adult. Immunity 1999, 10: 569–575.
  4. Ge Q., Rao V.P., Cho B.K., Eisen H. N., Chen J. Dependence of lymphopenia-induced T cell proliferation on the abundance of peptide/MHC epitopes and strength of their interaction with T cell receptors. Proc. Natl. Acad. Sci. USA 2001, 98: 1728–1733.
  5. Theofilopoulos A.N., Dummer W., Kono D.H. T-cell homeostasis and systemic autoimmunity. J. Clin. Invest. 2001, 108: 335–340.
  6. Kassiotis G., Zamoyska R., Stockinger B. Involvement of avidity for major histocompatibility complex in homeostasis of naive and memory T cells. J Exp. Med. 2003, 197(8): 1007–1016.
  7. Kieper W.C., Burghardt J.T., Surh C.D. A role for TCR affinity in regulating naive T cell homeostasis. J Immunol. 2004, 172(1): 40–44.
  8. Gudmundsdottir H., Turka L.A. A closer look at homeostatic proliferation of CD4+ T cells: costimulatory requirements and role in memory formation. J. Immunol. 2001, 167: 3699–3707.
  9. Cho J.H., Kim H.O., Surh C.D., Sprent J. T cell receptor-dependent regulation of lipid rafts controls naive CD8+ T cell homeostasis. Immunity 2010, 32(2): 214–226.
  10. Goldrath A.W., Bogatzki L.Y., Bevan M.J. Naive T cells transiently acquire a memory-like phenotype during homeostasis-driven proliferation. J. Exp. Med. 2000, 192(4): 557–564.
  11. Dummer W., Niethammer A.G., Baccala R., Lawson B.R., Wagner N., Reisfeld R.A., Theofilopoulos A.N. T cell homeostatic proliferation elicits effective antitumor autoimmunity. J. Clin. Invest. 2002, 110: 185–192.
  12. Theofilopoulos A.N., Dummer W., Kono D.H. T cell homeostasis and systemic autoimmunity. J. Clin. Invest. 2001, 108: 335–340.
  13. Sauce D., Larsen M., Fastenackels S., Roux A., Gorochov G., Katlama C., Sidi D., Sibony-Prat J., Appay V. Lymphopenia-driven homeostatic regulation of naïve T cells in elderly and thymectomized young adults. J Immunol. 2012; 189: 5541–5548.
  14. Niu N., Qin X. New insights into IL-7 signaling pathways during early and late T cell development. Cell Mol Immunol. 2013, 10(3): 187–189.
  15. Lawson B.R., Gonzalez-Quintial R., Eleftheriadis T., Farrar M.A., Miller S.D., Sauer K., McGavern D. B., Kono D.H., Baccala R., Theofilopoulos A.N. Interleukin-7 is required for CD4+ T cell activation and autoimmune neuroinflammation. Clin. Immunol. 2015, 161(2): 260–269.
  16. Dooms H., Wolslegel K., Lin P., Abbas A.K. Interleukin-2 enhances CD4+ T cell memory by promoting the generation of IL-7R alpha-expressing cells. J. Exp. Med. 2007, 204: 547–557.
  17. Mazzucchelli R., Durum S.K. Interleukin-7 receptor expression: intelligent design. Nat. Rev. Immunol. 2007, 7: 144–154.
  18. Park J.H., Yu Q., Erman B., Appelbaum J.S., Montoya-Durango D., Grimes H.L., Singer A. Suppression of IL7Ralpha transcription by IL-7 and other prosurvival cytokines: a novel mechanism for maximizing IL-7-dependent T cell survival. Immunity. 2004, 21: 289–302.
  19. Kimura M.Y., Pobezinsky L. A, Guinter T.I., Thomas J., Adams A., Park J.H., Tai X., Singer A. IL-7 signaling must be intermittent, not continuous, during CD8+ T cell homeostasis to promote cell survival instead of cell death. Nat Immunol. 2013, 14: 143–151.
  20. Berger C., Jensen M.C., Lansdorp P.M., Gough M., Elliott C., Riddell S.R. Adoptive transfer of effector CD8 T cells derived from central memory cells establishes persistent T cell memory in primates. J Clin. Invest. 2008, 118: 294–305.
  21. Stoklasek T.A., Colpitts S.L., Smilowitz H.M., Lefrançois L. MHC class I and TCR avidity control the CD8 T cell response to IL-15/IL15Rα complex. J Immunol. 2010, 185: 6857–6865.
  22. Purton J.F., Tan J.T., Rubinstein M.P., Kim D.M., Sprent J., Surh C.D. Antiviral CD4+ memory T cells are IL-15 dependent. J Exp. Med. 2007, 204: 951–961.
  23. Huntington N.D., Alves N.L., Legrand N., Lim A., Strick-Marchand H., Mention J.J., Plet A., Weijer K., Jacques Y., Becker P.D., Guzman C., Soussan P., Kremsdorf D., Spits H., Di Santo J.P. IL-15 transpresentation promotes both human T-cell reconstitution and T-cell-dependent antibody responses in vivo. Proc Natl. Acad. Sci USA. 2011; 108: 6217–6222.
  24. Van Belle T.L., Dooms H., Boonefaes T., Wei X.Q., Leclercq G., Grooten J. IL-15 augments TCR-induced CD4+ T cell expansion in vitro by inhibiting the suppressive function of CD25high CD4+ T cells. PLOS ONE, 2012, 7: e45299.
  25. Ogata Y., Kukita A., Kukita T., Komine M., Miyahara A., Miyazaki S., Kohashi O. A novel role of IL-15 in the development of osteoclasts: inability to replace its activity with IL-2. J. Immunol. 1999, 162: 2754–2760.
  26. Miranda-Carus M. E., Balsa A., Benito-Miguel M., Perez de Ayala C., Martin-Mola E. IL15 and the initiation of cell contactdependent synovial fibroblast-T lymphocyte cross-talk in rheumatoid arthritis: effect of methotrexate. J. Immunol 2004, 173 (2): 1463–1476.
  27. Raza K., Falciani F., Curnow S.J., Ross E.J., Lee C.Y., Akbar A.N., Lord J.M., Gordon C., Buckley C.D., Salmon M. Early rheumatoid arthritis is characterized by a distinct and transient synovial fluid cytokine profile of T cell and stromal cell origin. Arthritis Res Ther 2005, 7: 784–795.
  28. Kageyama Y., Takahashi M., Torikai E., Suzuki M., Ichikawa T., Nagafusa T., Koide Y., Nagano A. Treatment with anti-TNF-α antibody infliximab reduces serum IL-15 levels in patients with rheumatoid arthritis. Clin. Rheumatol. 2007, 26: 505–509.
  29. Jones J.L., Thompson S.A. J., Loh P., Davies J.L., Tuohy O.C., Curry A.J., Azzopardi L., Hill-Cawthorne G., Fahey M.T., Compston A., Coles A.J. Human autoimmunity after lymphocyte depletion is caused by homeostatic T-cell proliferation. PNAS, 2013, 10; 110(50): 20200-5.
  30. Lario M., Munoz L., Ubeda M., Borrero M.-J., Martinez J. Defective thymopoiesis and poor peripheral homeostatic replenishment of T-helper cells cause T-cell lymphopenia in cirrhosis. J. Hepatology, 2013, 59: 723–730.
  31. Koetz K., Bryl E., Spickschen K., O’Fallon W. M., Goronzy J.J., Weyand C.M. T cell homeostasis in patients with rheumatoid arthritis. Proc. Natl. Acad. Sci USA, 2000, 97: 9203-9208.
  32. Silva S.L., Albuquerque A.S., Matoso P., Charmeteaude-Muylder B., Cheynier R., Ligeiro D., Abecasis M., Anjos R., Barata J.T., Victorino R.M. M., Sousa A.E. IL-7-Induced Proliferation of Human Naive CD4 T-Cells Relies on Continued Thymic Activity. Front. Immunol. 2017, 19; 8:20.
  33. Prlic M., Blazar B.R., Khoruts A., Zell T., Jameson S.C. Homeostatic expansion occurs independently of costimulatory signals. J Immunol. 2001, 15; 167(10): 5664–8.
  34. Yamaki S., Ine S., Kawabe T., Okuyama Y., Suzuki N., Soroosh P., Mousavi S.F., Nagashima H., Sun S.L., So T., Sasaki T., Harigae H., Sugamura K., Kudo H., Wada M., Nio M., Ishii N. OX40 and IL-7 play synergistic roles in the homeostatic proliferation of effector memory CD4+ T cells. Eur J Immunol. 2014, 44(10): 3015-25.
  35. Li O., Zheng P., Liu Y. CD24 Expression on T Cells Is Required for Optimal T Cell Proliferation in Lymphopenic Host. J. Exp. Med. 2004, 18;200(8): 1083–1089.
  36. Bolton H.A., Zhu E., Terry A.M., Guy T.V., Koh W.P., Tan S.Y., Power C.A., Bertolino P., Lahl K., Sparwasser T., Shklovskaya E., Fazekas de St Groth B. Selective Treg reconstitution during lymphopenia normalizes DC costimulation and prevents graft-versus-host disease. J. Clin. Invest. 2015, 125(9): 3627–3641.
  37. Kawabe T., Sun S.L., Fujita T., Yamaki S., Asao A., Takahashi T., So T, Ishii N. Homeostatic Proliferation of Naive CD4+ T Cells in Mesenteric Lymph Nodes Generates Gut-Tropic Th17 Cells. J Immunol. 2013, 1; 190(11): 5788–98.
  38. Komatsu N., Okamoto K., Sawa S., Nakashima T., Oh-hora M., Kodama T., Tanaka S., Bluestone J.A., Takayanagi H. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat. Med. 2014, 20:62–70.
  39. Sakaguchi S., Yamaguchi T., Nomura T., Ono M. Regulatory T cells and immune tolerance. Cell, 2008, 133(5): 775–87.
  40. Zeng H., Chi H. The interplay between regulatory T cells and metabolism in immune regulation. Onco-Immunology, 2013, 2(11): e26586.
  41. Vahl J.C., Drees C., Heger K., Heink S., Fischer J.C., Nedjic J., Ohkura N., Morikawa H., Poeck H., Schallenberg S., Rieß D., Hein M.Y., Buch T., Polic B., Schönle A., Zeiser R., Schmitt-Gräff A., Kretschmer K., Klein L., Korn T., Sakaguchi S., Schmidt-Supprian M. Continuous T Cell Receptor Signals Maintain a Functional Regulatory T Cell Pool. Immunity 2014, 20; 41(5): 722–36.
  42. Kim J.K., Klinger M., Benjamin J., Xiao Y., Erle D.J., Littman D.R., Killeen N. Impact of the TCR signal on regulatory T cell homeostasis, function, and trafficking. PLoS ONE, 2009, 11;4(8): e6580.
  43. Tanaka S., Maeda S., Hashimoto M., Fujimori C., Ito Y., Teradaira S., Hirota K., Yoshitomi H., Katakai T., Shimizu A., Nomura T., Sakaguchi N., Sakaguchi S. Graded attenuation of TCR signaling elicits distinct autoimmune diseases by altering thymic T cell selection and regulatory T cell function. J. Immunol. 2010, 185: 2295–305.
  44. Walker L.S., Chodos A., Eggena M., Dooms H., Abbas A.K. Antigen-dependent proliferation of CD4+ CD25+ regulatory T cells in vivo. J. Exp. Med. 2003, 198: 249–258.
  45. Schmidt A.M., Lu W., Sindhava V.J. Huang Y., Burkhardt J.K., Yang E., Riese M.J., Maltzman J.S., Jordan M.S., Kambayashi T. Regulatory T cells require TCR signaling for their suppressive function. J Immunol. 2015, 194(9): 4362–70.
  46. Tai X., Erman B., Alag A., Mu J., Kimura M., Katz G., Guinter T., McCaughtry T., Etzensperger R., Feigenbaum L., Singer D.S., Singer A. Foxp3 transcription factor is proapoptotic and lethal to developing regulatory T cells unless counterbalanced by cytokine survival signals. Immunity. 2013, 38: 1116–1128.
  47. Sprouse M.L., Shevchenko I., Scavuzzo M.A., Joseph F., Lee T., Blum S., Borowiak M., Bettini M.L., Bettini M. Cutting Edge: Low-Affinity TCRs Support Regulatory T Cell Function in Autoimmunity. J. Immunol. 2017, 200(3): 909–914.
  48. Siegmund K., Feuerer M., Siewert C., Ghani S., Haubold U., Dankof A., Krenn V., Schön M.P., Scheffold A., Lowe J.B., Hamann A., Syrbe U., Huehn J. Migration matters: regulatory T-cell compartmentalization determines suppressive activity in vivo. Blood, 2005, 106: 3097–3104.
  49. Dudda J. C, Perdue N., Bachtanian E., Campbell D.J. Foxp3+ regulatory T cells maintain immune homeostasis in the skin. J. Exp. Med. 2008, 205: 1559–1565.
  50. Zhang N., Schröppel B., Lal G., Jakubzick C., Mao X., Chen D., Yin N., Jessberger R., Ochando J.C., Ding Y., Bromberg J.S. Regulatory T cells sequentially migrate from inflamed tissues to draining lymph nodes to suppress the alloimmune response. Immunity, 2009, 30: 458–469.
  51. Scheinecker C., McHugh R., Shevach E.M., Germain R.N. Constitutive presentation of a natural tissue autoantigen exclusively by dendritic cells in the draining lymph node. J. Exp. Med. 2002, 196: 1079–1090.
  52. Suffner J., Hochweller K., Kühnle M.C., Li X., Kroczek R.A., Garbi N., Hämmerling G.J. Dendritic cells support homeostatic expansion of Foxp3+ regulatory T cells in Foxp3.LuciDTR mice. J. Immunol. 2010, 184: 1810–1820.
  53. Darrasse-Jeze G., Deroubaix S., Mouquet H., Victora G.D., Eisenreich T., Yao K.H., Masilamani R.F., Dustin M.L., Rudensky A., Liu K., Nussenzweig M.C. Feedback control of regulatory T cell homeostasis by dendritic cells in vivo. J. Exp. Med. 2009, 206: 1853–1862.
  54. Wei X., Zhang J., Gu Q., Huang M., Zhang W., Guo J., Zhou X. Reciprocal Expression of IL-35 and IL-10 Defines Two Distinct Effector Treg Subsets that Are Required for Maintenance of Immune Tolerance. Cell Reports, 2017, 1853–1869.
  55. Wyss L., Stadinski B.D., King C.G., Schallenberg S., McCarthy N. I., Lee J.Y., Kretschmer K., Terracciano L.M., Anderson G., Surh C.D., Huseby E.S., Palmer E. Affinity for self-antigen selects Treg cells with distinct functional properties. Nat. Immunol. 2016, 17(9): 1093–101.
  56. Zou T., Caton A.J. Dendritic Cells Induce Regulatory T Cell Proliferation through Antigen-Dependent and Independent Interactions. The Journal of Immunology, 2010, 185: 2790–2799.
  57. Zou T., Satake A., Corbo E., Schmidt A.M., Farrar M.A., Maltzman J.S., Kambayashi T. Cutting edge: IL-2 signals determine the degree of TCR signaling necessary to support regulatory T cell proliferation in vivo. J. Immunol. 2012, 189: 28–32.
  58. Nishio J., Feuerer M., Wong J., Mathis D., Benoist C. Anti-CD3 therapy permits regulatory T cells to surmount T cell receptor-specified peripheral niche constraints. J Exp. Med. 2010, 207: 1879–1889.
  59. Salomon B., Lenschow D.J., Rhee L., Ashourian N., Singh B., Sharpe A., Bluestone J.A. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity, 2000, 12: 431–440.
  60. Sansom D.M., Walker L.S. The role of CD28 and cytotoxic T-lymphocyte antigen-4 (CTLA-4) in regulatory T-cell biology. Immunol. Rev. 2006, 212: 131–148.
  61. Tang Q., Henriksen K.J., Boden E.K., Tooley A.J., Ye J., Subudhi S.K., Zheng X.X., Strom T.B., Bluestone J.A. Cutting edge: CD28 controls peripheral homeostasis of CD4+CD25+ regulatory T cells. J. Immunol. 2003, 171, 3348–3352.
  62. Bar-On L., Birnberg T., Kim K.W., Jung S. Dendritic cell-restricted CD80/86 deficiency results in peripheral regulatory T-cell reduction but is not associated with lymphocyte hyperactivation. Eur. J. Immunol. 2011, 41: 291–298.
  63. Golovina T.N., Mikheeva T., Suhoski M.M., Aqui N.A., Tai V.C., Shan X., Liu R., Balcarcel R.R., Fisher N., Levine B.L., Carroll R.G., Warner N., Blazar B.R., June C.H., Riley J.L. CD28 costimulation is essential for human T regulatory expansion and function. J. Immunol. 2008, 181: 2855–2868.
  64. Zheng Y., Manzotti C.N., Liu M., Burke F., Mead K.I., Sansom D.M. CD86 and CD80 differentially modulate the suppressive function of human regulatory T cells. J. Immunol. 2004, 172: 2778–2784.
  65. Burmeister Y., Lischke T., Dahler A.C., Mages H.W., Lam K.P., Coyle A.J., Kroczek R.A., Hutloff A. ICOS controls the pool size of effector-memory and regulatory T cells. J. Immunol. 2008, 180: 774–782.
  66. Herman A.E., Freeman G.J., Mathis D., Benoist C. CD4+CD25+ T Regulatory Cells Dependent on ICOS Promote Regulation of Effector Cells in the Prediabetic Lesion. J. Exp. Med. 2004, 199: 1479–1489.
  67. Suzuki H., Kündig T.M., Furlonger C., Wakeham A., Timms E., Matsuyama T., Schmits R., Simard J.J., Ohashi P.S., Griesser H. Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor beta. Science 1995, 268: 1472–1476.
  68. Sakaguchi S., Sakaguchi N., Asano M., Itoh M., Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 1995, 155: 1151–1164.
  69. Sharfe N., Dadi H.K., Shahar M., Roifman C.M. Human immune disorder arising from mutation of the alpha chain of the interleukin-2 receptor. Proc. Natl. Acad. Sci USA 1997, 94: 3168–3171.
  70. Cheng G., Yu A., Dee M.J., Malek T.R. IL-2R signaling is essential for functional maturation of regulatory T cells during thymic development. J. Immunol. 2013, 190: 1567–1575.
  71. Jeon P.H., Oh K.I. IL2 is required for functional maturation of regulatory T cells. Animal Cells and Systems, 2017, 21:1, 1–9.
  72. Zhang H., Kong H., Zeng X., Guo L., Sun X., He S. Subsets of regulatory T cells and their roles in Allergy. Journal of Translational Medicine, 2014, 12:125.
  73. Chinen T., Kannan A.K., Levine A.G., Fan X., Klein U., Zheng Y., Gasteiger G., Feng Y., Fontenot J.D., Rudensky A.Y. An essential role for the IL-2 receptor in Treg cell function. Nat. Immunol. 201617(11): 1322–1333.
  74. Almeida A.R., Zaragoza B., Freitas A.A. Indexation as a novel mechanism of lymphocyte homeostasis: the number of CD4+CD25+ regulatory T cells is indexed to the number of IL-2-producing cells. J. Immunol. 2006, 177: 192–200.
  75. Kushwah R., Hu J. Role of dendritic cells in the induction of regulatory T cells. Cell Biosci. 2011, 1: 20.
  76. Munn D.H., Mellor A.L. IDO in the Tumor Microenvironment: Inflammation, Counter-Regulation, and Tolerance. Trends Immunol. 2016, 37(3): 193–207.
  77. Kitagawa Y., Ohkura N., Sakaguchi S. Molecular determinants of regulatory T cell development: the essential roles of epigenetic changes. Front. Immunol. 2013, 4: 106.
  78. Sekiya T., Nakatsukasa H., Lu Q., Yoshimura A. Roles of transcription factors and epigenetic modifications in differentiation and maintenance of regulatory T cells. Microbes Infect. 2016, 18: 378–386.
  79. Huehn J., Siegmund K. Developmental stage, phenotype, and migration distinguish naive- and effector/memory-like CD4+ regulatory T cells. J. Exp. Med. 2004; 199: 303–313.
  80. Gratz I.K., Truong H-A. Memory regulatory T cells require IL-7 and not IL-2 for their maintenance in peripheral tissues. J Immunol. 2013, 190(9): 4483–4487.
  81. Golubovskaya V., Wu L. Different Subsets of T Cells, Memory, Effector Functions, and CAR-T Immunotherapy. Cancers, 2016, 8, 36.
  82. Matteucci E., Bartola L.D., Giampietro O. Regulatory T Cells with Effector Memory Phenotype and Glycaemic Control in Adult Type 1 Diabetes Mellitus. J. Diabetes Metab. 2013, S12:003.
  83. Lee J.H., Kang S.G., Kim C.H. FoxP3+ T cells undergo conventional first switch to lymphoid tissue homing receptors in thymus but accelerated second switch to nonlymphoid tissue homing receptors in secondary lymphoid tissues. J. Immunol. Baltim. Md. 2007; 178: 301–311.
  84. Smigiel K.S., Richards E., Srivastava S., Thomas K.R., Dudda J.C., Klonowski K.D., Campbell D.J. CCR7 provides localized access to IL-2 and defines homeostatically distinct regulatory T cell subsets. J. Exp. Med. 2014; 211: 121–136.
  85. Long M., Adler A.J. Cutting Edge: Paracrine, but Not Autocrine, IL-2 Signaling Is Sustained during Early Antiviral CD4 T Cell Response. J. Immunol. 2006; 177: 4257–4261.
  86. Sabatos C.A., Doh J., Chakravarti S., Friedman R.S., Pandurangi P.G., Tooley A.J., Krummel M.F. A synaptic basis for paracrine interleukin-2 signaling during homotypic T cell interaction. Immunity, 2008, 29: 238–248.
  87. Vasanthakumar A., Liao Y., Teh P., Pascutti M.F., Oja A.E., Garnham A.L. The TNF Receptor Superfamily-NF-kBAxisIs Critical to Maintain Effector Regulatory T Cells in Lymphoid and Non-lymphoid Tissues. Cell Rep. 2017; 20: 2906–2920.
  88. Silva S.L., Albuquerque A.S., Serra-Caetano A., Foxall R.B., Pires A.R., Matoso P. Human naive regulatory T-cells feature high steady-state turnover and are maintained by IL-7. Oncotarget. 2016; 7: 12163–12175.
  89. Rosenblum M.D., Gratz I.K., Paw J.S., Lee K., Marshak-Rothstein A., Abbas A.K. Response to self-antigen imprints regulatory memory in tissues. Nature, 2011, 480: 538–4210.
  90. Sabatos-Peyton C. A., Verhagen J., Wraith D.C. Antigen-specific immunotherapy of autoimmune and allergic diseases. Curr. Opin. Immunol. 2010; 22:609–15.
  91. Eberl G. Immunity by equilibrium. Nat. Rev. Immunol. 2016; 8: 524–32.
  92. Duarte J.H., Zelenay S., Bergman M.L., Martins A.C., Demengeot J. Natural Treg cells spontaneously differentiate into pathogenic helper cells in lymphopenic conditions. Eur. J. Immunol. 2009, 39: 948–955.
  93. Chevalier N., Thorburn A.N., Macia L., Tan J., Juglair L., Yagita H., Yu D., Hansbro P.M., Mackay C.R. Inflammation and Lymphopenia Trigger Autoimmunity by Suppression of IL-2-Controlled Regulatory T Cell and Increase of IL-21-Mediated Effector T Cell Expansion. J Immunol. 2014, 193: 4845–4858.
  94. Bayer A.L., Lee J.Y., de la Barrera A., Surh C.D., Malek T.R. A function for IL-7R for CD4+CD25+ Foxp3+ T regulatory cells. J. Immunol. 2008, 181(1): 225–234.
  95. Simonetta F., Gestermann N., Martinet K.Z., Boniotto M., Tissières P., Seddon B., Bourgeois C. Interleukin-7 Influences FOXP3+CD4+ Regulatory T Cells Peripheral Homeostasis. PLoS One. 2012, 7(5): e36596.
  96. Simonetta F., Chiali A., Cordier C., Urrutia A., Girault I., Bloquet S., Tanchot C., Bourgeois C. Increased CD127 expression on activated FOXP3+CD4+ regulatory T cells. Eur. J. Immunol. 2010, 40: 2528–2538.
  97. Simonetta F., Gestermann N., Bloquet S., Bourgeois C. Interleukin-7 Optimizes FOXP3+CD4+ Regulatory T Cells Reactivity to Interleukin-2 by Modulating CD25 Expression. PLoS ONE, 2014, 9(12): e113314.
  98. Heninger A.K., Theil A., Wilhelm C., Petzold C., Huebel N., Kretschmer K., Bonifacio E., Monti P. IL-7 abrogates suppressive activity of human CD4+CD25+FOXP3+ regulatory T cells and allows expansion of alloreactive and autoreactive T cells. J. Immunol. 2012, 189(12): 5649–58.
  99. Tosiek M.J., Fiette L., El Daker S., Eberl G., Freitas A.A. IL-15-dependent balance between Foxp3 and RORγt expression impacts inflammatory bowel disease. Nat. Commun. 2016, 11;7: 10888.
  100. Xia J., Liu W., Hu B., Tian Z., Yang Y. IL-15 promotes regulatory T cell function and protects against diabetes development in NK-depleted NOD mice. Clin. Immunol. 2010; 134: 130–139.
  101. Ben A.M., Belhadj H.N., Moes N., Buyse S., Abdeladhim M., Louzir H., Cerf-Bensussan N. IL-15 renders conventional lymphocytes resistant to suppressive functions of regulatory T cells through activation of the phosphatidylinositol 3-kinase pathway. J. Immunol. 2009, 182: 6763–6770.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Shevyrev D.V., Tereshchenko V.P., Kozlov V.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № 77 - 11525 от 04.01.2002.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies