Pathogenetic value of TP53 point mutations in adult acute myeloid leukemia patients

Cover Page


Cite item

Full Text

Abstract

The aim of the study was to assess pathogenetic significance of TP53 gene mutations in adult acute myeloid leukemia (AML) patients. Clinical observation was carried out on 114 AML patients at the Sverdlovsk Regional Clinical Hospital No. 1 (Ekaterinburg), including 56 males and 58 females. The average age of subjects was 53.3±2.8 years.
Morphologically, AML was previously verified in all cases at specialized laboratories by using standard cytological, cytochemical, immunophenotypic, histological and immunohistochemical methods. The study included the following variants of AML: M0 – 5, M1 – 9, M2 – 47, M2baso – 3, M2eo – 2, M3 – 8, M4 – 25, M4eo – 3, M5 – 3, M6 – 4, M7 – 1, acute myelofibrosis – 1, blastic plasmacytoid dendritic cell neoplasm – 2. Samples of peripheral blood and bone marrow aspirates from patients were examined. Exons 4-11 within the TP53 gene were tested for molecular damage by using sequencing method. In addition, 81 samples, including 22 AML with normal and 23 with an unspecified karyotype were examined for gene mutations by using molecular genetic and immunohistochemical methods. cDNA sequencing was carried out on automatic genetic analyzer in forward and reverse sequences. The sequencing results were processed by using the MEGA X software and statistical hypothesis that they may be described by a binomial distribution. The statistical hypothesis was tested by using Fisher’s exact test and χ2 test.
According to the results of cytogenetic and PCR studies, a favorable prognosis was determined in 25 cases (21.9%), intermediate – 24 (21.1%) and unfavorable – in 33 (28.9%). No genetic abnormalities could be detected in 32 samples (28.1%) with standard cytogenetics and real-time PCR, and prognosis option for such patients was not specified.
TP53 missense mutations were revealed as C292T, A377G, A659G, C817T transitions (4 cases) and C569G, G733T, G841C transversions (3 cases); synonymous A639G substitutions were also determined (1.8% ) and C891T (0.9%), in codon position 3, providing no pathogenetic significance. In one sample (0.9%), a deletion of thymidine at position 645 of the coding sequence was determined, leading to produced shortened mutant protein. All the above mutations were localized in the region of the DNA-binding domain. Also, in one case (0.9%), a tandem duplication of 19 nucleotides at position 960 of the coding sequence of the NLS domain protein located in acetylation site. Non-synonymous C215G transversion, which is a polymorphic gene variant, was determined in 94 samples (82.5%). Clinically, all TP53-positive AML were characterized by unfavorable prognosis and primary resistance to standard chemotherapy. The average age of such patients was 63.0±5.4 years, with average follow-up reaching up to 3.1±0.9 months.

About the authors

A. V. Vinogradov

Sverdlovsk Regional Ministry of Health; Ural State Medical University

Author for correspondence.
Email: a.vinogradov@egov66.ru

Vinogradov Alexander V. - PhD (Medicine), Chief Therapist, Hematologist; Hematologist, Postdoc Researcher

620014, Ekaterinburg, Weiner str., 34b

Phone: 7 (919) 438-92-33

Russian Federation

A. V. Rezaykin

Ural State Medical University

Email: fake@neicon.ru

PhD (Medicine), Associate Professor, Department of Medical Physics

Ekaterinburg

Russian Federation

D. V. Litvinova

Ural State Medical University

Email: fake@neicon.ru

Clinical Resident

Ekaterinburg

Russian Federation

A. N. Loboda

Ural State Medical University

Email: fake@neicon.ru

Student

Ekaterinburg

Russian Federation

S. V. Sazonov

Ural State Medical University; Institute of Medical Cell Technology

Email: fake@neicon.ru

PhD, MD (Medicine), Professor, Head, Department of Histology; Deputy Head

Ekaterinburg

Russian Federation

A. G. Sergeev

Ural State Medical University

Email: fake@neicon.ru

PhD, MD (Medicine), Professor, Head, Department of Microbiology, Virology and Immunology

Ekaterinburg

Russian Federation

References

  1. Виноградов А.В. Разработка технологии детекции мутаций генов CDKN2A/ARF, FLT3, KIT, NPM1, NRAS, TET2, TP53, WT1 при острых миелоидных лейкозах // Российский онкологический журнал, 2013, № 4. С. 34-35. [Vinogradov A.V. Technology development of CDKN2A/ARF, FLT3, KIT, NPM1, NRAS, TET2, TP53, WT1 gene mutations detection during acute myeloid leukemia. Rossiyskiy onkologicheskiy zhurnal = Russian Journal of Oncology, 2013, no. 4, pp. 34-35. (In Russ.)]
  2. Виноградов А.В., Резайкин А.В., Изотов Д.В., Сергеев А.Г. Применение технологии прямого автоматического секвенирования для детекции мутаций генов ASXL1, DNMT3A, FLT3, KIT, NRAS, TP53 и WT1 при острых миелоидных лейкозах с неуточненным кариотипом // Вестник Уральской медицинской академической науки, 2016. № 4. С. 38-51. [Vinogradov A.V., Rezaykin A.V., Izotov D.V., Sergeev A.G. ASXL1, DNMT3A, FLT3, KIT, NRAS, TP53 and WT1 genes mutations detection in acute myeloid leukemia with unspecified karyotype using direct sequencing technique. Vestnik Uralskoy meditsinskoy akademicheskoy nauki = Journal of Ural Medical Academic Science, 2016, no. 4, pp. 38-51. (In Russ.)]
  3. Виноградов А.В., Резайкин А.В., Сазонов С.В., Салахов Д.Р., Сергеев А.Г. Бластная плазмацитоидная дендритоклеточная опухоль: опыт диагностики и лечения в Свердловском областном онкогематологическом центре // Российский иммунологический журнал, 2017. Т. 11, № 2. С. 110-114. [Vinogradov A.V., Rezaykin A.V., Sazonov S.V., Salakhov D.R., Sergeev A.G. Blastic plazmatsitoids dendritocell tumour: experience of diagnostics and treatment in the Sverdlovsk regional oncohematological center. Rossiyskiy immunologicheskiy zhurnal = Russian Journal of Immunology, 2017, Vol. 11, no. 2, pp. 110-114. (In Russ.)]
  4. Виноградов А.В., Резайкин А.В., Сазонов С.В., Сергеев А.Г.. Клинико-патогенетическая характеристика мутаций генов DNMT3A, FLT3, KIT, NPM1, NRAS, TP53 и WT1 у больных острыми миелоидными лейкозами в возрастной группе 15-45 лет // Гены и клетки, 2018. Т. 14, № 3. С. 70-74. [Vinogradov A.V., Rezaykin A.V., Sazonov S.V., Sergeev A.G. Clinical and pathological features DNMT3A, FLT3, KIT, NPM1, NRAS, TP53 and WT1 genes mutations detection in acute myeloid leukemia patient aged 15-45 years old. Geny i kletki = Genes and Cells, 2018, Vol. 14, no. 3, pp. 70-74. (In Russ.)]
  5. Виноградов А.В., Резайкин А.В., Салахов Д.Р., Иощенко С.Е., Сергеев А.Г. Сравнительный анализ результатов типирования молекулярных повреждений гена NPM1 при острых миелоидных лейкозах с использованием прямого автоматического секвенирования и иммуногистохимического метода // Вестник Уральской медицинской академической науки, 2013. № 4. С. 124-127. [Vinogradov A.V., Rezaykin A.V., Salakhov D.R., Ioschenko S.E., Sergeev A.G. Сomparative analysis of NPM1 gene mutations detection results using sequencing and immunohistochemical technique. Vestnik Uralskoy meditsinskoy akademicheskoy nauki = Journal of Ural Medical Academic Science, 2013, no. 4, pp. 124-127. (In Russ.)]
  6. Hainaut P., Pfeifer G.P. Somatic TP53 mutations in the era of genome sequencing. Cold Spring Harb. Perspect. Med., 2016, Vol. 6, no. 11, pii: a026179. doi: 10.1101/cshperspect.a026179.
  7. Herold T., Rothenberg-Thurley M., Grunwald V.V., Janke H., Goerlich D., Sauerland M.C., Konstandin N.P., Dufour A., Schneider S., Neusser M., Ksienzyk B., Greif P.A., Subklewe M., Faldum A., Bohlander S.K., Braess J., Wörmann B., Krug U., Berdel W.E., Hiddemann W., Spiekermann K., Metzeler K.H. Validation and refinement of the revised 2017 European LeukemiaNet genetic risk stratification of acute myeloid leukemia. Leukemia, 2020. doi: 10.1038/s41375-020-0806-0.
  8. Huang R., Liao X., Li Q. Identification of key pathways and genes in TP53 mutation acute myeloid leukemia: evidence from bioinformatics analysis. OncoTargets Ther., 2017, Vol. 11, pp. 163-173.
  9. Hunter A.M., Sallman D.A. Current status and new treatment approaches in TP53 mutated AML. Best Pract. Res. Clin. Haematol., 2019, Vol. 32, no. 2, pp. 134-144.
  10. Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol., 2018, Vol. 35, no. 6, pp. 1547-1549.
  11. Leroy B., Girard L., Hollestelle A., Minna J.D., Gazdar A.F., Soussi T. Analysis of TP53 mutation status in human cancer cell lines: a reassessment. Hum. Mutat., 2014, Vol. 35, no. 6, pp. 756-765.
  12. Li V.D., Li K.H., Li J.T. TP53 mutations as potential prognostic markers for specific cancers: analysis of data from The Cancer Genome Atlas and the International Agency for Research on Cancer TP53 Database. J. Cancer Res. Clin. Oncol., 2019, Vol. 145, no. 3, pp. 625-636.
  13. Wang X., Sun Q. TP53 mutations, expression and interaction networks in human cancers. Oncotarget, 2017, Vol. 8, no. 1, pp. 624-643.
  14. Welch J.S. Patterns of mutations in TP53 mutated AML. Best Pract. Res. Clin. Haematol., 2018, Vol. 31, no. 4, pp. 379-383.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Vinogradov A.V., Rezaykin A.V., Litvinova D.V., Loboda A.N., Sazonov S.V., Sergeev A.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № 77 - 11525 от 04.01.2002.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies