MECHANISMS OF ANTI-INFLAMMATORY EFFECT OF GLYCOSYLATED POLYPEPTIDE COMPLEX EXTRACTED FROM SEA URCHIN STRONGYLOCENTROTUS DROEBACHIENSIS
- Authors: Katelnikova A.E.1,2, Kryshen K.L.2, Makarova M.N.2, Makarov V.G.2, Shikov A.N.2
-
Affiliations:
- Northwest State Medical University of I.I. Mechnikov
- Saint-Petersburg Institute of Pharmacy
- Issue: Vol 21, No 1 (2018)
- Pages: 73-79
- Section: ORIGINAL ARTICLES
- Submitted: 15.04.2020
- Accepted: 15.04.2020
- Published: 15.01.2018
- URL: https://rusimmun.ru/jour/article/view/82
- DOI: https://doi.org/10.7868/S1028722118010094
- ID: 82
Cite item
Full Text
Abstract
The results of research on two models of acute bronchitis induced by cigarette smoke and formaldehyde, in rats the substance of glycosylated polypeptides complex (GPC) provided anti-inflammatory effect. Based on these data, a search of anti-inflammatory action mechanisms of GPC. The aim of the study was to investigate the activity of GPC obtained from viscera of sea urchins S. droebachiensis on two cyclooxygenase isoforms (COX1 and COX2), 5 – lipoxygenase (5-LOX), lipopolysaccharide (LPS)-induced p38 mitogen-activated protein kinase (MAPK) phosphorylation, toll-like receptor 4 (TLR4). COX1/2 and 5-LOX activity studied using commercial kits (Cayman Chemicals, USA). GPC effects on LPS-induced p38 MAРK phosphorylation were studied using human monocyte cellline U937. To assess the interaction of GPC with toll-like receptor 4 (TLR4) cell line HEK-Blue-hTLR4 (Invivogen, USA) was used. Results of the study showed that GPC inhibited COX2 activity with IС50 67 µg/ml. Also, GPC inhibited LPS-induced p38 MAРK phosphorylation by blockade of TLR4 with ЕС50 2.7 µg/ml. In the other hand, GPC did not affect the activity of COX1 and 5-LOX. The obtained results allow to conclude that targets of GPC anti-inflammatory action are: COX2, of p38 MAРK and TLR4.
About the authors
A. E. Katelnikova
Northwest State Medical University of I.I. Mechnikov; Saint-Petersburg Institute of Pharmacy
Author for correspondence.
Email: katelnikova.ae@doclinika.ru
Postgraduate Student, Department of Pharmacology Northwest State Medical University of I.I. Mechnikov, 191015, Saint-Petersburg;
Head of the immunobiological research group Saint-Petersburg Institute of Pharmacy, 188663, Leningradskaya reg., Vsevolozhskiy district, Kuzmolovskiy
Russian FederationK. L. Kryshen
Saint-Petersburg Institute of Pharmacy
Email: fake@neicon.ru
PhD (Biology), Head of Department of Toxicology and Microbiology
Leningradskaya reg., Vsevolozhskiy district
Russian FederationM. N. Makarova
Saint-Petersburg Institute of Pharmacy
Email: fake@neicon.ru
MD (Medicine), Deputy for science
Leningradskaya reg., Vsevolozhskiy district
Russian FederationV. G. Makarov
Saint-Petersburg Institute of Pharmacy
Email: fake@neicon.ru
MD (Medicine), professor, General Director
Leningradskaya reg., Vsevolozhskiy district
Russian FederationA. N. Shikov
Saint-Petersburg Institute of Pharmacy
Email: fake@neicon.ru
MD (Pharm.), Deputy on innovation activity
Leningradskaya reg., Vsevolozhskiy district
Russian FederationReferences
- Aneiros A., Garateix A. Bioactive peptides from marine sources: pharmacological properties and isolation procedures. Journal of Chromatography B2004, 803(1), 41–53.
- Уракова И.Н., Пожарицкая О.Н., Демченко Д.В., Шиков А.Н., Макаров В.Г. Биологическая активность и способы получения пептидов из рыб. Биология моря 2012, 38 (6), 421–427.
- Черешнев В.А., Гусев Е.Ю. Системное воспаление как иммунопатобиологический феномен. Цитокины и воспаление 2002, 1(2), 17.
- Руднов В.А. От локального воспаления к системному: выход на новые представления патогенеза критических состояний и перспективы терапии. Интенсивная терапия 2006, 3(1), 5–8.
- Krakauer T. Molecular therapeutic targets in inflammation: cyclooxygenase and NF-kappaB. Curr Drug Targets Inflamm Allergy 2004, 3(3), 317–324.
- Кукес В.Г. Клиническая фармакология. ГОЭТАР-Медиа, Москва, 2009, 985.
- Suleyman H., Demircan B., Karagoz Y. Antiinflammatory and side effects of cyclooxygenase inhibitors. Pharmacol Rep 2007, 59(3), 247–258.
- Holgate S.T., Peters-Golden M., Panettieri R.A., Henderson W.R. Roles of cysteinyl leukotrienes in airway inflammation, smooth muscle function, and remodeling. J. Allergy Clin Immunol 2003, 111(1), 18–34.
- Кетлинский С.А., Симбирцев А.С. Цитокины. ООО “Издательство Фолиант”, СПб, 2008, 552.
- Huang G., Shi L.Z., Chi H. Regulation of JNK and p38 MAPK in the immune system: Signal integration, propagation and termination. Cytokine 2009, 48(3), 161–169.
- Cuadrado A., Nebreda A.R. Mechanisms and functions of p38 MAPK signaling. Biochemical Journal 2010, 429(3), 403–417.
- Елисеева Т.И., Балаболкин И.И. Современные технологии контроля бронхиальной астмы у детей (обзор). Соврем. технол. мед. 2015, 2, 168–184.
- Dumitru C.D., Ceci J.D., Tsatsanis C., Kontoyiannis D., Stamatakis K., Lin J.H., Patriotis C., Jenkins N.A., Copeland N.G., Kollias G., Tsichlis P.N. TNF-α induction by LPS is regulated posttranscriptionally via a Tpl2/ERK-dependent pathway. Cell 2000, 103, 1071–1083.
- Kyriakis J.M., Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiological Reviews 2009, 81, 807–869.
- Saklatvala J. The p38 MAP kinase pathway as a therapeutic target in inflammatory disease. Current Opinion Pharmacology 2004, 4, 372–377.
- Кательникова А.Е., Крышень К.Л., Макарова М.Н., Макаров В.Г., Воробьева В.В., Пожарицкая О.Н., Шиков А.Е. Изучение специфической фармакологической активности комплекса гликозилированных полипептидов, выделенного из морских ежей вида Strongylocentrotus droebachiensis на модели острого бронхита, индуцированного формалином у крыс. Биофармацевтический журнал 2016, 8(6), 56–63.
- Mauer H. Disc electrophoresis and related techniques of polyacrylamide gel. Electrophoresis 1971, 44–45.
- Barnett J., Chow J., Ives D. Purification, characterization and selective inhibition of human prostaglandin G/H synthase 1 and 2 expressed in the baculovirus system. Biochim Biophys Acta 1994, 1209, 130–139.
- Wada Y., Nakajima-Yamada T., Yamada K., Tsuchida J., Yasumoto T., Shimozato T., Aoki K., Kimura T., Ushiyama S. R-130823, a novel inhibitor of p38 MAPK, ameliorates hyperalgesia and swelling in arthritis models. European Journal of Pharmacology 2005, 506, 285–295.
- Nishikawa M., Myoui A., Tomita T., Takahi K., Nampei A., Yoshikawa H. Prevention of the onset and progression of collagen-induced arthritis in rats by the potent p38 mitogen-activated protein kinase inhibitor FR167653. Arthritis and Rheumatism 2003, 48, 2670–2681.
- Badger A.M., Griswold D.E., Kapadia R., Blake S., Swift B.A., Hoffman S.J., Stroup G.B., Webb E., Rieman D.J., Gowen M., Boehm J.C., Adams J.L., Lee J.C. Disease-modifying activity of SB242235, a selective inhibitor of p38 mitogen-activated protein kinase, in rat adjuvant-arthritis. Arthritis and Rheumatism 2000, 43, 175–183.
- Hommes D., Blink B., Plasse T., Bartelsman J., Xu C., Macpherson B., Tytgat G., Peppelenbosch M., Van Deventer S. Inhibition of stress-activated MAP kinases induces clinical improvement in moderate to severe Crohn`s disease. Gastroenterology 2002, 122, 7–14.