Neutrophilokines and the morphofunctional state of circulating neutrophils in ovarian tumors

Cover Page


Cite item

Full Text

Abstract

There is currently no clear understanding of the molecular participants providing cytotoxic and/or cytostatic activity of neutrophils (Nph) in relation to tumor cells. Cytokines produced by neutrophils are necessary for their paracrine and autocrine interactions with surrounding cells. In order to assess the effect of regulatory neutrophilokines on the morphofunctional state of circulating Nph in benign ovarian tumors and ovarian cancer, the ELISA method was used to assess the level of IL-4, IL-6, IL-10, IL-8, IL-18, IFNγ, MCP-1 and MMP-1in neutrophils, expression of CD11b, CD63, CD16, CD95. Determined the rigidity of the membrane and the ability of neutrophils to form NET. Statistical processing of the obtained data was carried out using the software Statistica 13.0, Jamovi 1.6.5.0. It was found that in ovarian cancer the rigidity of neutrophils depends on the level of IL-10, MCP-1, IL-18, IL-8, IL-4, IFNγ, IL-6 in neutrophils. The method of multiple regression revealed the dependence of the ability to form NETs on the level of IL-4 and IL-6 in Nph. Revealed an inverse correlation between the rigidity of the membrane Nph and their ability to form traps in ovarian cancer. In benign ovarian tumors, a noticeable direct correlation was found between the rigidity of the neutrophil membrane and the adhesive marker CD11b. In ovarian cancer, a correlation was found between the rigidity of the Nph membrane and the CD63 degranulation marker. At benign ovarian tumors, no correlations were found between the number of activated neutrophils and the level of intracellular cytokines in Nph. In ovarian cancer, correlations were found between the number of CD11b+Nph and the level of IL-6, IL-8 in them; between the amount of CD63, CD95 and intracellular IL-8. The amount of CD16+Nph correlated with the level of MMP-1 and IL-8 in Nph. The amount of CD95+Nph correlated with the level of IL-18 in Nph. Thus, the change in the level of neutrophilokines in benign ovarian tumors did not correlate with changes in the ability to NETosis, expression of activation markers, but was accompanied by an increase in the rigidity of the membrane of circulating neutrophils. In ovarian cancer, an increase in IL-8 correlated with a decrease in CD16 expression and an increase in CD63; a decrease in CD16 correlated with an increase in MMP-1. An increase in membrane rigidity in ovarian cancer was associated with changes in all considered neutrophilokines (IL-4, IL-6, IL-8, IL-10, IL-18, MCP-1, IFNγ). The combination of IL-4, IL-6, IL-18 indices, NET number and membrane rigidity of circulating Nph (according to the results of multivariate analysis) can be used for differential diagnosis of ovarian cancer.

About the authors

T. V. Abakumova

Ulyanovsk State University

Author for correspondence.
Email: taty-abakumova@yandex.ru
ORCID iD: 0000-0001-7559-5246

Abakumova Tatyana V. - PhD (Biology), Associate Professor, Department of Physiology and Pathophysiology

432017, Ulyanovsk, Arch. Livchak str., 2

Russian Federation

T. P. Gening

Ulyanovsk State University

Email: Naum-53@yandex.ru
ORCID iD: 0000-0002-5117-1382

PhD, MD (Biology), Professor, Head, Department of Physiology and Pathophysiology

432017, Ulyanovsk, Arch. Livchak str., 2

Russian Federation

I. I. Antoneeva

Ulyanovsk State University; Regional Clinical Oncology Center of Ulyanovs

Email: aii72@mail.ru
ORCID iD: 0000-0002-1525-2070

PhD, MD (Medicine), Associate Professor, Professor, Department of Oncology and Radiology; Head, Department of Oncogynecology

432017, Ulyanovsk, Arch. Livchak str., 2

 

Russian Federation

S. O. Gening

Ulyanovsk State University

Email: sgening@bk.ru
ORCID iD: 0000-0001-6970-6659

Assistant Professor, Department of Physiology and Pathophysiology

432017, Ulyanovsk, Arch. Livchak str., 2

Russian Federation

V. V. Gnoevykh

Ulyanovsk State University

Email: valvik@inbox.ru
ORCID iD: 0000-0002-8009-0557

PhD, MD (Medicine), Professor, Head, Department of Propedeutics and Internal Medicine

432017, Ulyanovsk, Arch. Livchak str., 2

Russian Federation

References

  1. Плескова С.Н. Наноматериалы и их гематотоксические свойства. - Нижний Новгород, 2018. – 170 с. ISBN 978-5-9500131-6-4
  2. Al-Jumaa M., Hallett M.B., Dewitt S. Cell surface topography controls phagocytosis and cell spreading: The membrane reservoir in neutrophils // Biochim Biophys Acta Mol Cell Res. 2020. Vol. 1867, no. 12, pp.118832. doi: 10.1016/j.bbamcr.2020.118832.
  3. Bouti P., Zhao X.W., Verkuijlen P.J.J.H., Tool A.T.J., van Houdt M., Köker N., Köker M.Y., Keskin O., Akbayram S., van Bruggen R., Kuijpers T.W., Matlung H.L., van den Berg T.K. Kindlin3-Dependent CD11b/CD18-Integrin Activation Is Required for Potentiation of Neutrophil Cytotoxicity by CD47-SIRPalpha Checkpoint Disruption // Cancer Immunol Res. 2021. Vol.9, no. 2, pp.147-155. doi: 10.1158/2326-6066.CIR-20-0491.
  4. Garley M., Jabłońska E., Sawicka-Powierza J., Ratajczak-Wrona W., Kłoczko J., Piszcz J. Expression of subtypes of interleukin-17 ligands and receptors in patients with B-cell chronic lymphocytic leukemia // Clin Lab. 2014. Vol.60, no.10, pp.1677-1683. doi: 10.7754/clin.lab.2014.131107.
  5. Giudice E.D., Ciaramella A., Balestro N., Neumann D., Romano P.G., Cesaroni M.P., Maurizi G., Ruggiero P., Boraschi D., Bossù P. Neutrophil apoptosis in autoimmune Fas-defective MRL lpr/lpr mice // Eur Cytokine Netw. 2001. Vol.12, no.3, pp.510-517. https://pubmed.ncbi.nlm.nih.gov/11566632/
  6. Golay J., Valgardsdottir R., Musaraj G., Giupponi D., Spinelli O., Introna M. Human neutrophils express low levels of FcγRIIIA, which plays a role in PMN activation // Blood. 2019. Vol.133, no.13, pp.1395-1405. doi: 10.1182/blood-2018-07-864538.
  7. Jaber B.L., Perianayagam M.C., Balakrishnan V.S., King A.J., Pereira B.J. Mechanisms of neutrophil apoptosis in uremia and relevance of the Fas (APO-1, CD95)/Fas ligand system // J Leukoc Biol. 2001. Vol.69, no.6, pp.1006-1012. https://pubmed.ncbi.nlm.nih.gov/11404388/
  8. Jensen K.N., Sunnefa Yeatman Omarsdottir, Margret Sol Reinhardsdottir, Ingibjorg Hardardottir, Jona Freysdottir. Docosahexaenoic Acid Modulates NK Cell Effects on Neutrophils and Their Crosstalk // Front Immunol. 2020. No.11, pp.570380. doi: 10.3389/fimmu.2020.570380.
  9. Kelm M., Lehoux S., Azcutia V., Cummings R.D., Nusrat A., Parkos C.A., Brazil J.C. Regulation of neutrophil function by selective targeting of glycan epitopes expressed on the integrin CD11b/CD18. // FASEB J. 2020. Vol.34, no.2, pp.2326-2343. doi: 10.1096/fj.201902542R.
  10. Lau D., Mollnau H., Eiserich J.P., Freeman B.A., Daiber A., Gehling U.M., Brümmer J., Rudolph V., Münzel T., Heitzer T., Meinertz T., Baldus S. Myeloperoxidase mediates neutrophil activation by association with CD11b/CD18 integrins. // Proc Natl Acad Sci U S A. 2005. Vol.102, no.2, pp.431-6. doi: 10.1073/pnas.0405193102.
  11. Lewkowicz N., Mycko M.P., Przygodzka P., Ćwiklińska H., Cichalewska M., Matysiak M., Selmaj K., Lewkowicz P. Induction of human IL-10-producing neutrophils by LPS-stimulated Treg cells and IL-10 // Mucosal Immunol. 2016. Vol.9, no.2, pp.364-78. doi: 10.1038/mi.2015.66.
  12. Lu Y., Huang Y., Huang L., Xu Y., Wang Z., Li H., Zhang T., Zhong M., Gao W.Q., Zhang Y. CD16 expression on neutrophils predicts treatment efficacy of capecitabine in colorectal cancer patients. BMC Immunol. 2020. Vol.21, no.1, pp.46. doi: 10.1186/s12865-020-00375-8.
  13. Millrud C.R., Kågedal Å., Kumlien Georén S., Winqvist O., Uddman R., Razavi R., Munck-Wikland E., Cardell L.O. NET-producing CD16high CD62Ldim neutrophils migrate to tumor sites and predict improved survival in patients with HNSCC // Int J Cancer. 2017. Vol.140, no.11, pp.2557-2567. doi: 10.1002/ijc.30671
  14. Pleskova S.N., Gorshkova E.N., Novikov V.V., Solioz M. Treatment by serum up-conversion nanoparticles in the fluoride matrix changes the mechanism of cell death and the elasticity of the membrane // Micron. 2016. Vol.90, pp.23-32. doi: 10.1016/j.micron.2016.08.005.
  15. Pleskova SN, Kriukov RN, Bobyk SZ, Boryakov AV, Gorelkin PV, Erofeev AS. Conditioning adhesive contacts between the neutrophils and the endotheliocytes by Staphylococcus aureus // J Mol Recognit. 2020. Vol.33, no.9, pp.e2846.
  16. Roberts R.E., Hallett M.B. Neutrophil Cell Shape Change: Mechanism and Signalling during Cell Spreading and Phagocytosis // Int J Mol Sci 2019. Vol.20, no.6, pp.1383. doi: 10.3390/ijms20061383.
  17. Rumalla V., Calvano S.E., Spotnitz A.J., Krause T.J., Lin E., Lowry S.F. The effects of glucocorticoid therapy on inflammatory responses to coronary artery bypass graft surgery. // Arch Surg. 2001. Vol.136, no.9, pp.1039-1044. doi: 10.1001/archsurg.136.9.1039.
  18. Saitoh T., Komano J., Saitoh Y., Misawa T., Takahama M., Kozaki T., Uehata T., Iwasaki H., Omori H., Yamaoka S., Yamamoto N., Akira S. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1 // Cell Host Microbe. 2012. Vol.12, no.1, pp.109-116. doi: 10.1016/j.chom.2012.05.015.
  19. Song J., Wu C., Zhang X., Sorokin L.M. In vivo processing of CXCL5 (LIX) by matrix metalloproteinase (MMP)-2 and MMP-9 promotes early neutrophil recruitment in IL-1β-induced peritonitis // J Immunol. 2013. Vol.190, no.1, pp.401-410. doi: 10.4049/jimmunol.1202286.
  20. Sun B., Qin W., Song M., Liu L., Yu Y., Qi X., Sun H. Neutrophil Suppresses Tumor Cell Proliferation via Fas /Fas Ligand Pathway Mediated Cell Cycle Arrested // Int J Biol Sci. 2018. Vol.14, no.14, pp.2103-2113. doi: 10.7150/ijbs.29297.
  21. Tecchio C., Scapini P.,Pizzolo G., Cassatella M.A. On the cytokines produced by human neutrophils in tumors // Semin Cancer Biol. 2013. Vol. 23, no.3, pp.159-170. doi: 10.1016/j.semcancer.2013.02.004.
  22. Thiam H.R., Wong S.L., Wagner D.D., Waterman C.M. Cellular Mechanisms of NETosis. Annu Rev Cell Dev Biol. 2020. Vol.36, pp.191-218. doi: 10.1146/annurev-cellbio-020520-111016.
  23. White C., DiStefano .T, Olabisi R. The influence of substrate modulus on retinal pigment epithelial cells // J Biomed Mater Res A. 2017. Vol.105, no.5, pp.1260-1266. doi: 10.1002/jbm.a.35992.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Abakumova T.V., Gening T.P., Antoneeva I.I., Gening S.O., Gnoevykh V.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № 77 - 11525 от 04.01.2002.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies