COMPARATIVE CHARACTERISTICS OF DIFFERENT ENDOTYPES OF CHRONIC RHINOSINUSITIS
- Authors: Lazareva A.1, Smirnova O.V.1
-
Affiliations:
- Federal State Budgetary Scientific Institution «Scientific Research Institute of medical problems of the North» (SRI MPN), Russia, Krasnoyarsk
- Section: REVIEWS
- Submitted: 28.06.2024
- Accepted: 24.07.2025
- URL: https://rusimmun.ru/jour/article/view/17004
- DOI: https://doi.org/10.46235/1028-7221-17004-CCO
- ID: 17004
Cite item
Full Text
Abstract
Abstract
Chronic rhinosinusitis is the most common reason for visiting an otolaryngologist. Although data on the prevalence of rhinosinusitis are inconsistent, the average global prevalence was 11.61 ± 5.47%, with a range from a minimum of 1.01% to a maximum of 57.6%. Based on the consensus document EPOS 2020 (European Position Paper on Rhinosinusitis and Nasal Polyposis), chronic rhinosinusitis is divided into polypous and rhinosinusitis without polyps. A special type is polypous rhinosinusitis, which is characterized by a low response to conservative therapy and frequent relapses after surgical treatment. These serious medical and social problems features stimulate the study of the pathogenesis of the formation of nasal polyps. This review provides information about the immunological features and dysfunctions leading to the appearance of chronic rhinosinusitis with or without polyps. The purpose of this review is to study, according to the literature, the influence of the first line of defense, congenital and acquired components. immunity to the pathogenesis of polyposis and nonpolyposis CRS.
The article provides a review of foreign scientific literature. The authors conducted a scientific search on the topic of the immune response in the formation of chronic rhinosinusitis with and without polyps. We used appropriate keywords and filters in the PubMed and Google Scholar search engines, in the Scopus, Web of Science, MedLine, The Cochrane Library, EMBASE, Global Health, and CyberLeninka databases. It is described in detail that all parts of the immune system do not fully perform their functions. The first line of defense of the nasal and sinus mucosa is the respiratory epithelium and mucociliary clearance, which form a mechanical barrier to infectious and other penetrating agents. At the next stage, cells and the innate immune response system, the complement system, take part in the elimination of external pathogenic agents. Presentation of an antigen epitope to lymphocytes generates a specialized adaptive immune response. Tissue remodeling is one of the most relevant aspects of the pathogenesis of CRS. It has been established that in PRS the synthesis of periostin increases, tissue eosinophilia progresses, the production of cystatin SN, IL-25 and the level of fibroblasts increases, the level of TLR2, TLR4, TGF-B and collagen production decreases, the extracellular neutrophil traps and the level of M1 macrophages increase. Further study of the links in the immunological pathogenesis of CRS will allow us to develop a personalized algorithm for the diagnosis and treatment of such patients.
About the authors
Anna Lazareva
Federal State Budgetary Scientific Institution «Scientific Research Institute of medical problems of the North» (SRI MPN), Russia, Krasnoyarsk
Email: nuraaa@rambler.ru
ORCID iD: 0000-0001-7972-3719
Candidate of Medical Sciences, junior researcher of the Laboratory of Molecular Cellular Pathophysiology (SRI MPN)
Russian FederationOlga Valentonovna Smirnova
Federal State Budgetary Scientific Institution «Scientific Research Institute of medical problems of the North» (SRI MPN), Russia, Krasnoyarsk
Author for correspondence.
Email: ovsmirnova71@mail.ru
ORCID iD: 0000-0003-3992-9207
Dr.Sci.Med., professor, Head of the Laboratory of Molecular Cellular
Russian Federation, Russia, 660022, Krasnoyars, P.Zheleznyaka Str., 3 G.
References
- Bae, C.H.; Na, H.G.; Choi, Y.S.; Song, S.Y.; Kim, Y.D. Clusterin Induces MUC5AC Expression via Activation of NF-kappaB in Human Airway Epithelial Cells. Clin. Exp. Otorhinolaryngol. 2018, no 11, pp. 124–132., doi: 10.21053/ceo.2017.00493.
- Boita, M.; Bucca, C.; Riva, G.; Heffler, E. Release of Type 2 Cytokines by Epithelial Cells of Nasal Polyps. J. Immunol. Res. 2016, no 2016, pp. 264-287., http://dx.doi.org/10.1155/2016/2643297
- Boscke, R.; Vladar, E.K.; Konnecke, M.; Husing, B.; Linke, R.; Pries, R.; Reiling, N.; Axelrod, J.D.; Nayak, J.V.; Wollenberg, B. Wnt Signaling in Chronic Rhinosinusitis with Nasal Polyps. Am. J. Respir. Cell Mol. Biol. 2017, no 56, pp. 575–584., doi: 10.1056/NEJMoa1713976.
- Cho, D.Y.; Nayak, J.V.; Bravo, D.T.; Le, W.; Nguyen, A. Expression of dual oxidases and secreted cytokines in chronic rhinosinusitis. Int. Forum Allergy Rhinol. 2013, no 3, pp. 376–383., doi: 10.1002/alr.21133. Epub 2012 Dec 21.
- Du, K.; Wang, M.; Zhang, N.; Yu, P.; Wang, P.; Li, Y. Involvement of the extracellular matrix proteins periostin and tenascin C in nasal polyp remodeling by regulating the expression of MMPs. Clin. Transl. Allergy 2021, 11, e12059., doi: 10.33029/1816-2134-2023-44-3-379-390
- Ebenezer, J.A.; Christensen, J.M.; Oliver, B.G.; Oliver, R.A.; Tjin, G.; Ho, J.; Habib, A.R. Periostin as a marker of mucosal remodelling in chronic rhinosinusitis. Rhinology 2017, no 55, pp. 234–241., doi: 10.1016/j.alit.2022.08.006.
- Fokkens, W.J.; Lund, V.J.; Hopkins, C.; Hellings, P.W.; Kern, R.; Reitsma, S.; Toppila-Salmi, S.; Bernal-Sprekelsen, M.; Mullol, J.; Alobid, I.; et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2020. Rhinology 2020, no 58, pp. 1–464., doi: 10.4193/Rhin20.600.
- Ito, T.; Ikeda, S.; Asamori, T.; Honda, K.; Kawashima, Y. Increased expression of pendrin in eosinophilic chronic rhinosinusitis with nasal polyps. Braz. J. Otorhinolaryngol. 2019, no 85, pp. 760–765., doi: 10.1016/j.bjorl.2018.07.005.
- Jiao, J.; Duan, S.; Meng, N.; Li, Y.; Fan, E. Role of IFN-gamma, IL-13, and IL-17 on mucociliary differentiation of nasal epithelial cells in chronic rhinosinusitis with nasal polyps. Clin. Exp. Allergy 2016, no 46, pp. 449–460., doi: 10.1111/cea.12644.
- Johnston, L.K.; Bryce, P.J. Understanding Interleukin 33 and Its Roles in Eosinophil Development. Front. Med. 2017, no 4, pp. 51., https://doi.org/10.3389/fmed.2017.00051
- Kaneko, Y.; Kohno, T.; Kakuki, T.; Takano, K.I.; Ogasawara, N.; Miyata, R.; Kikuchi, S. The role of transcriptional factor p63 in regulation of epithelial barrier and ciliogenesis of human nasal epithelial cells. Sci. Rep. 2017, no 7, pp. 10-15., doi: 10.1038/s41598-017-11481-w
- Kao, S.S.; Bassiouni, A.; Ramezanpour, M.; Finnie, J.; Chegeni, N.; Colella, A.D.; Chataway, T.K.; Wormald, P.J. Proteomic analysis of nasal mucus samples of healthy patients and patients with chronic rhinosinusitis. J. Allergy Clin. Immunol. 2021, no 147, pp. 168–178., doi: 10.1016/j.jaci.2020.06.037.
- Kato, A.; Peters, A.T.; Stevens, W.W.; Schleimer, R.P. Endotypes of chronic rhinosinusitis: Relationships to disease phenotypes, pathogenesis, clinical findings, and treatment approaches. Allergy 2022, no 77, pp. 812–826., doi: 10.1111/all.15074.
- Kato, K.; Chang, E.H.; Chen, Y.; Lu, W.; Kim, M.M.; Niihori, M. MUC1 contributes to goblet cell metaplasia and MUC5AC expression in response to cigarette smoke in vivo. Am. J. Physiol. Lung Cell. Mol. Physiol. 2020, no 319, pp. 82–L90., doi: 10.1152/ajplung.00049.2019.
- Kim, D.K.; Jin, H.R.; Eun, K.M.; Mo, J.H.; Cho, S.H.; Oh, S.The role of interleukin-33 in chronic rhinosinusitis. Thorax 2017, no 72, pp. 635–645., doi: 10.3390/diagnostics12102344
- Klingler, A.I.; Stevens, W.W.; Tan, B.K.; Peters, A.T.; Poposki, J.A.; Grammer, L.C.; Welch, K.C.; Smith, S.S.; Conley, D.B.; Kern, R.C.; et al. Mechanisms and biomarkers of inflammatory endotypes in chronic rhinosinusitis without nasal polyps. J. Allergy Clin. Immunol. 2021, no 147, pp. 1306–1317., doi: 10.1056/NEJMoa2028395.
- Liao, B.; Cao, P.P.; Zeng, M.; Zhen, Z.; Wang, H. Interaction of thymic stromal lymphopoietin, IL-33, and their receptors in epithelial cells in eosinophilic chronic rhinosinusitis with nasal polyps. Allergy 2015, no 70, pp.1169–1180., doi: 10.1111/all.12667. Epub 2015 Jul 6.
- Luo, S.; Li, B. IL-25 contributes to lung fibrosis by directly acting on alveolar epithelial cells and fibroblasts. Exp. Biol. Med. 2019, no 244, pp. 770–780., doi: 10.1177/1535370219843827.
- Meng, J.; Zhou, P.; Liu, Y.; Liu, F.; Yi, X.; Liu, S.; Holtappels, G.; Bachert, C.; Zhang, N. The development of nasal polyp disease involves early nasal mucosal inflammation and remodelling. Braz. j. otorhinolaryngol. 2013, no 1, pp. 3-39., https://doi.org/10.1016/j.bjorl.2023.01.007
- Mueller, S.K.; Wendler, O.; Nocera, A.; Grundtner, P. Escalation in mucus cystatin 2, pappalysin-A, and periostin levels over time predict need for recurrent surgery in chronic rhinosinusitis with nasal polyps. Int. Forum Allergy Rhinol. 2019, 9, 1212–1219., doi: 10.1002/alr.22407. Epub 2019 Aug 20.
- Nagarkar, D.R.; Poposki, J.A.; Tan, B.K. Thymic stromal lymphopoietin activity is increased in nasal polyps of patients with chronic rhinosinusitis. J. Allergy Clin. Immunol. 2013, no 132, pp. 593–600., https://doi.org/10.1016/j.jaci.2013.04.005
- Park, S.K.; Jin, Y.D.; Park, Y.K.; Yeon, S.H.; Xu, J.; Han, R.N.; Rha, K.S. IL-25-induced activation of nasal fibroblast and its association with the remodeling of chronic rhinosinusitis with nasal polyposis. PLoS ONE 2017, 12, e0181806., doi: 10.1371/journal.pone.0181806
- Shin, H.W.; Kim, D.K.; Park, M.H.; Eun, K.M.; Lee, M.; So, D.; Kong, I.G. IL-25 as a novel therapeutic target in nasal polyps of patients with chronic rhinosinusitis. J. Allergy Clin. Immunol. 2015, no 135, pp. 1476–1485., doi: 10.1016/j.jaci.2015.01.003
- Soler, Z.M.; Yoo, F.; Schlosser, R.J.; Mulligan, J.; Ramakrishnan, V.R.; Beswick, D.M.; Alt, J.A.; Mattos, J.L. Correlation of mucus inflammatory proteins and olfaction in chronic rhinosinusitis. Int. Forum Allergy Rhinol. 2020, no 10, pp. 343–355., doi.org/10.1016/j.jaci.2021.01.021
- Soyka, M.B.; Wawrzyniak, P.; Eiwegger, T.; Holzmann, D.; Treis, A.; Wanke, K.efective epithelial barrier in chronic rhinosinusitis: The regulation of tight junctions by IFN-gamma and IL-4. J. Allergy Clin. Immunol. 2012, no 130, pp. 1087–1096., doi: 10.1016/j.jaci.2012.05.052.
- Wise, S.K.; Laury, A.M.; Katz, E.H.; Den Beste, K.A. Interleukin-4 and interleukin-13 compromise the sinonasal epithelial barrier and perturb intercellular junction protein expression. Int. Forum Allergy Rhinol. 2014, no 4, pp. 361–370., doi: 10.1002/alr.21298. Epub 2014 Feb 7.
- Wu, D.; Yan, B.; Wang, Y.; Wang, C.; Zhang, L. Prognostic and pharmacologic value of cystatin SN for chronic rhinosinusitis with nasal polyps. J. Allergy Clin. Immunol. 2021, no 148, pp. 450–460., doi: 10.1016/j.jaci.2021.01.036.
- Yan, B.; Lou, H.; Wang, Y.; Li, Y.; Meng, Y.; Qi, S. Epithelium-derived cystatin SN enhances eosinophil activation and infiltration through IL-5 in patients with chronic rhinosinusitis with nasal polyps. J. Allergy Clin. Immunol. 2019, no 144, pp. 455–469., doi.org/10.1016/j.jaci.2019.03.026
Supplementary files
