FUNCTIONALIZATION OF CARBON NANOPARTICLES WITH ANTI-IGE APTAMER
- Authors: Rayev M.B.1,2, Kropaneva M.D.1, Khramtsov P.V.1,2
-
Affiliations:
- Perm State National Research University
- Institute of Ecology and Genetics of Microorganisms UrB RAS
- Issue: Vol 20, No 2 (2017)
- Pages: 207-211
- Section: Articles
- Submitted: 22.10.2020
- Published: 15.04.2017
- URL: https://rusimmun.ru/jour/article/view/627
- ID: 627
Cite item
Full Text
Abstract
Technology of conjugation of carbon nanoparticles with DNA aptamer based on biotin-streptavidin interaction was developed and optimized. Sorption of 30-60 pM DNA per mg of nanoparticles was obtained at the initial ration of 125-500 pM/mg.
About the authors
M. B. Rayev
Perm State National Research University; Institute of Ecology and Genetics of Microorganisms UrB RAS
Author for correspondence.
Email: noemail@neicon.ru
Russian Federation
M. D. Kropaneva
Perm State National Research University
Email: noemail@neicon.ru
Russian Federation
P. V. Khramtsov
Perm State National Research University; Institute of Ecology and Genetics of Microorganisms UrB RAS
Email: noemail@neicon.ru
Russian Federation
References
- Bahadir, E.B., Sezginturk, M.K. (2016) Lateral flow assays: Principles, designs and labels, TrAC - Trends in Analytical Chemistry, http://dx.doi.org/10.1016/j. trac.2016.06.006.
- Huang, X., Aguilar, Z.P., Xu, H., Lai, W., Xiong, Y. (2015) Membrane-based lateral flow immunochro- matographic strip with nanoparticles as reporters for detection: A review, Biosensors and Bioelectron-ics, http://dx.doi.org/10.1016/j.bios.2015.08.032.
- Bayda, S., Hadla, M., Palazzolo, S. et al. (2017) Bottom-up synthesis of carbon nanoparticles with higher doxorubicin efficacy, Journal of Controlled Release, http://dx.doi.org/10.1016/j.jconrel.2017.01.022.
- Misra, S.K., Srivastava, I., Tripathi, I. et al. (2017) Macromolecularly caged carbon nanoparticles for intracellular trafficking via switchable photolumi-nescence, Journal of the American Chemical Society, http://dx.doi.org/10.1021/jacs.6b11595.
- Lee, H.- J., Sanetuntikul, J., Choi, E.- S. et al. (2015) Photothermal cancer therapy using graphitic carbon-coated magnetic particles prepared by one-pot synthesis, International Journal of Nanomedicine, http://dx.doi.org/10.2147/IJN.S7312.
- Sadhasivam, S., Savitha, S., Wu, C.-J., Lin, F.-H., Stobinski, L. (2015) Carbon encapsulated iron oxide nanoparticles surface engineered with polyethylene glycol-folic acid to induce selective hyperthermia in folate over expressed cancer cells, International Journal of Pharmaceutics, http://dx.doi.org/10.1016/j. ijpharm.2015.01.029.
- Li, X., Ding, J., Wang, X., Wei, K., Weng, J., Wang, J. (2014) Onepot synthesis and functionalisation of Fe2O 3@C-NH2 nanoparticles for imaging and therapy, IET Nanobiotechnology, http://dx.doi. org/10.1049/iet-nbt.2012.0015.
- Zlateski, V., Fuhrer, R., Koehler, F.M. et al. (2014) Efficient magnetic recycling of covalently attached enzymes on carbon-coated metallic nanomagnets, Bioconjugate Chemistry, http://dx.doi.org/10.1021/ bc400476y.
- Gonzalez-Melendi, P., Fernandez-Pacheco, R., Coro-nado, M.J. et al. (2008) Nanoparticles as smart treatment-delivery systems in plants: Assessment of different techniques of microscopy for their visualization in plant tissues, Annals of Botany, http:// dx.doi.org/10.1093/aob/mcm283.
- Sengupta, A., Mezencev, R., McDonald, J.F., Prausnitz, M.R. (2015) Delivery of siRNA to ovarian cancer cells using laser-activated carbon nanoparticles, Nano-medicine, http://dx.doi.org/10.2217/nnm.15.27.
- Li, F.- R., Li, Q., Zhou, H.- X., Qi, H., Deng, C.- Y. (2013) Detection of circulating tumor cells in breast cancer with a refined immunomagnetic nanopar-ticle enriched assay and nested-RT-PCR, Nano-medicine: Nanotechnology, Biology, and Medicine, http://dx.doi.org/10.1016/j.nano.2013.03.002.
- Weber, W., Lienhart, C., Daoud-El Baba, M. et al. (2009) Magnet-guided transduction of mammalian cells and mice using engineered magnetic lentiviral particles, Journal of Biotechnology, http://dx.doi. org/10.1016/j.jbiotec.2009.02.023.
- Herrmann, I.K., Beck-Schimmer, B., Schumacher, C.M. et al. (2016) In vivo risk evaluation of carbon-coated iron carbide nanoparticles based on short-and long-term exposure scenarios, Nanomedicine, http://dx.doi.org/10.2217/nnm.16.22.
- Herrmann, I.K., Urner, M., Hasler, M. et al. (2011) Iron core/shell nanoparticles as magnetic drug carriers: possible interactions with the vascular compartment, Nanomedicine, http://dx.doi.org/10.2217/ nnm.11.33.
- Maximilien, J., Beyazit, S., Rossi, C., Haupt, K., Tse Sum Bui, B. (2016) Nanoparticles in biomedical applications, Bioanalytical Reviews, http://dx.doi. org/10.1007/11663_2015_12.
- Zhou, J., Rossi, J., (2017) Aptamers as targeted therapeutics: Current potential and challenges, Nature Reviews Drug Discovery, http://dx.doi.org/10.1038/ nrd.2016.199.
- Nezlin, R. (2016) Use of aptamers in immunoassays, Molecular Immunology, http://dx.doi.org/10.1016/j. molimm.2015.12.009.
- Davydova, A., Vorobjeva, M., Pyshnyi, D. et al. (2016) Aptamers against pathogenic microorganisms, Critical Reviews in Microbiology, http:// dx.doi.org/10.3109/1040841X.2015.1070115.
- Lin, X., Cui, L., Huang, Y. (2014) Carbon nano-particle-protected aptamers for highly sensitive and selective detection of biomolecules based on nuclease-assisted target recycling signal amplification, Chemical Communications, http://dx.doi. org/10.1039/c4cc02184c.
- Duan, N., Gong, W., Wang, Z., Wu, S. (2016) An aptasensor based on fluorescence resonance energy transfer for multiplexed pathogenic bacteria determination, Analytical Methods, http://dx.doi. org/10.1039/c5ay02608c.
- Raev, M.B., Khramtsov, P.V., Bochkova, M.S. (2015) Investigation into size distribution of carbon nanoparticles covalently functionalized with proteins, Nanotechnologies in Russia, http://dx.doi. org/10.1134/S1995078015010152.
- Wiegand, T.W., Williams, P.B., Dreskin, S.C. et al. // J Immunol. 1996. N157. P. 221-230.
- He, J.-L., Wu, Z.-S., Zhang, S.-B., Shen, G.-L., Yu, R.-Q. (2009) Novel fluorescence enhancement IgE assay using a DNA aptamer, Analyst, http://dx.doi. org/10.1039/b812450g.
- Gokulrangan, G., Unruh, J.R., Holub, D.F. et al. (2005) DNA aptamer-based bioanalysis of IgE by fluorescence anisotropy, Analytical Chemistry, http://dx.doi.org/10.1021/ac0483926.
- Jiang, P., He, M., Shen, L., Shi, A., Liu, Z. (2017) A paper-supported aptasensor for total IgE based on luminescence resonance energy transfer from up-conversion nanoparticles to carbon nanoparticles, Sensors and Actuators, B: Chemical, http://dx.doi. org/10.1016/j.snb.2016.08.005.