PERIPHERAL BLOOD CCR6+CXCR3– CD8+ T CELLS IN THE PATHOGENESIS OF RELAPSING-REMITTING MULTIPLE SCLEROSIS
- Authors: Lebedev V.M.1, Frolova O.M.2, Starikova E.A.2, Mammedova J.T.2, Kudryavtsev I.V.2
-
Affiliations:
- N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences (IHB RAS), St.Petersburg, Russian Federation
- Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", St.Petersburg, Russian Federation
- Section: Immunological readings in Chelyabinsk
- Submitted: 26.03.2025
- Accepted: 25.05.2025
- URL: https://rusimmun.ru/jour/article/view/17141
- DOI: https://doi.org/10.46235/1028-7221-17141-PBC
- ID: 17141
Cite item
Full Text
Abstract
Abstract
Introduction. Multiple sclerosis (MS) is a chronic progressive neurodegenerative autoimmune disease, that is characterized by the presence of disseminated patches of demyelination in the brain and spinal cord, containing different subsets of immune cells, including CD8+ T cells. Currently, CD8+ T cells can be subdivided into three main subsets, including Tc1, Tc2 and Tc17 according to their cytokine production profile and phenotype. A balance between the cytolytic Tc1, on the one hand, and cytokine-producing Tc2 and Tc17 cell subsets, on the other hand, seems to play crucial role in emergence of diverse pathological conditions including autoimmunity. Thus, we have examined the frequency of Tc cell subsets in peripheral blood of patients with relapsing-remitting MS (MS, n=25) and sex and age matched healthy individuals (HC, n=24). Methods. To analyze the frequency of CD8+ T cell subsets we used multicolor flow cytometry. We evaluated the relative and absolute frequencies of Tc1 (CCR6–CXCR3+), Tc2 (CCR6–CXCR3–), Tc17 (CCR6+CXCR3–) and Tc17.1 (CCR6+CXCR3+) cells, as well as we measured the relative frequencies of mentioned subsets within main maturation stages of CD8+ T cell, including «naïve» (CD45RA+CD62L+), central (СМ) and effector (ЕМ) memory, and TEMRA (CD45RA+CD62L–) cells. Results. First, we noticed that the relative frequency of Tc1 was decreased in MS group vs HC, while the relative and absolute frequencies of Тс17 of Тс17.1 were significantly elevated during MS. Next, our data revealed a significant increase in the frequencies of Тс17 on all analyzed stages of CD8+ T cell maturation, that were identified in peripheral blood samples from MS patients. Furthermore, the differences with the control group were most critical in the case of ЕМ and TEMRA CD8+ T cell subsets (11,66% (4,75; 14,69) vs 2,45% (1,48; 3,89), and 4,91% (3,68; 8,63) vs 0,41% (0,11; 1,30), respectively, with р<0,001 in both cases), exhibited enhanced migratory properties to the inflammatory sites. Conclusions. Thus, we provide some new insights in the frequency of ‘polarized’ CD8+ T cell subsets in patients with MS, and the obtained data point to an important part of Tc17 cell in the pathogenesis of MS, and can be used for development of new diagnostic techniques and treatment approaches for MS.
About the authors
Valeriy Mihajlovich Lebedev
N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences (IHB RAS), St.Petersburg, Russian Federation
Email: lebedevvaleriy@bk.ru
Head of Neurology department, neurologist, junior researcher
Russian Federation, 197022, St. Petersburg, acad. Pavlov str., 9, N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences (IHB RAS)Olga Mihajlovna Frolova
Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", St.Petersburg, Russian Federation
Email: dr.novoselova@gmail.com
neurologist, junior researcher
Russian Federation, 197022, St. Petersburg, acad. Pavlov str., 9, N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences (IHB RAS)Eleonora Aleksandrovna Starikova
Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", St.Petersburg, Russian Federation
Email: Starickova@yandex.ru
PhD (Biology), senior researcher
Russian Federation, 197376, St. Petersburg, acad. Pavlov str., 12, Scientific Research Institute of Experimental MedicineJennet Tumarovna Mammedova
Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", St.Petersburg, Russian Federation
Email: jennet_m@mail.ru
Researcher
Russian Federation, 197376, St. Petersburg, acad. Pavlov str., 12, Scientific Research Institute of Experimental MedicineIgor Vladimirovich Kudryavtsev
Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", St.Petersburg, Russian Federation
Author for correspondence.
Email: igorek1981@yandex.ru
PhD (Biology), Head of laboratory
Russian Federation, 197376, St. Petersburg, acad. Pavlov str., 12, Scientific Research Institute of Experimental MedicineReferences
- Annunziato F., Romagnani C., Romagnani S. The 3 major types of innate and adaptive cell-mediated effector immunity. J. Allergy. Clin. Immunol., 2015, Vol. 135, no. 3, pp. 626-635. doi: 10.1016/j.jaci.2014.11.001
- Kebir H., Kreymborg K., Ifergan I., Dodelet-Devillers A., Cayrol R., Bernard M., Giuliani F., Arbour N., Becher B., Prat A. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat. Med., 2007, Vol. 13, no. 10, pp. 1173-1175. doi: 10.1038/nm1651
- Kudryavtsev I., Benevolenskaya S., Serebriakova M., Grigor'yeva I., Kuvardin E., Rubinstein A., Golovkin A., Kalinina O., Zaikova E., Lapin S., Maslyanskiy A. Circulating CD8+ T cell subsets in primary Sjögren's syndrome. Biomedicines, 2023, Vol. 11, no. 10, pp. 2778 doi: 10.3390/biomedicines11102778
- Kudryavtsev I.V., Arsentieva N.A., Korobova Z.R., Isakov D.V., Rubinstein A.A., Batsunov O.K., Khamitova I.V., Kuznetsova R.N., Savin T.V., Akisheva T.V., Stanevich O.V., Lebedeva A.A., Vorobyov E.A., Vorobyova S.V., Kulikov A.N., Sharapova M.A., Pevtsov D.E., Totolian A.A. Heterogenous CD8+ T cell maturation and 'polarization' in acute and convalescent COVID-19 patients. Viruses, 2022, Vol. 14, no. 9, pp. 1906. doi: 10.3390/v14091906
- Lolli F., Martini H., Citro A., Franceschini D., Portaccio E., Amato M.P., Mechelli R., Annibali V., Sidney J., Sette A., Salvetti M., Barnaba V. Increased CD8+ T cell responses to apoptotic T cell-associated antigens in multiple sclerosis. J Neuroinf., 2013, Vol. 10, pp. 94. doi: 10.1186/1742-2094-10-94
- Loyal, L., Warth, S., Jürchott, K. et al. SLAMF7 and IL-6R define distinct cytotoxic versus helper memory CD8+ T cells. Nat. Commun., 2020, Vol. 11, pp. 6357 https://doi.org/10.1038/s41467-020-19002-6
- Lückel C., Picard F., Raifer H., Campos Carrascosa L., Guralnik A., Zhang Y., Klein M., Bittner S., Steffen F., Moos S., Marini F., Gloury R., Kurschus F.C., Chao Y.Y., Bertrams W., Sexl V., Schmeck B., Bonetti L., Grusdat M., Lohoff M., Zielinski C.E., Zipp F., Kallies A., Brenner D., Berger M., Bopp T., Tackenberg B., Huber M. IL-17+ CD8+ T cell suppression by dimethyl fumarate associates with clinical response in multiple sclerosis. Nat Commun., 2019, Vol. 10, no. 1, pp. 5722. doi: 10.1038/s41467-019-13731-z
- Mittrücker H.W., Visekruna A., Huber M. Heterogeneity in the differentiation and function of CD8+ T cells. Arch. Immunol. Ther. Exp. (Warsz), 2014, Vol. 62, no. 6, pp. 449-458. doi: 10.1007/s00005-014-0293-y
- Nicol B., Salou M., Vogel I., Garcia A., Dugast E., Morille J., Kilens S., Charpentier E., Donnart A., Nedellec S., Jacq-Foucher M., Le Frère F., Wiertlewski S., Bourreille A., Brouard S., Michel L., David L., Gourraud P.A., Degauque N., Nicot A.B., Berthelot L., Laplaud D.A. An intermediate level of CD161 expression defines a novel activated, inflammatory, and pathogenic subset of CD8+ T cells involved in multiple sclerosis. J Autoimmun., 2018, Vol. 88, pp. 61-74. doi: 10.1016/j.jaut.2017.10.005
- Reich D.S., Lucchinetti C.F., Calabresi P.A. Multiple Sclerosis. N. Engl. J. Med., 2018, Vol. 378, no. 2, pp. 169-180. doi: 10.1056/NEJMra1401483
- Rubinstein A., Kudryavtsev I., Arsentieva N., Korobova Z.R., Isakov D., Totolian A.A. CXCR3-Expressing T Cells in Infections and Autoimmunity. Front. Biosci. (Landmark Ed), 2024, Vol. 29, no. 8, pp. 301. doi: 10.31083/j.fbl2908301
- Salehi Z., Doosti R., Beheshti M., Janzamin E., Sahraian M.A., Izad M. Differential frequency of CD8+ T cell subsets in multiple sclerosis patients with various clinical patterns. PLoS ONE, 2016, Vol. 11, no. 7, pp. e0159565 https://doi.org/10.1371/journal.pone.0159565
- Stojić-Vukanić Z., Hadžibegović S., Nicole O., Nacka-Aleksić M., Leštarević S., Leposavić G. CD8+ T cell-mediated mechanisms contribute to the progression of neurocognitive impairment in both multiple sclerosis and Alzheimer's disease? Front Immunol., 2020, Vol. 11, pp. 566225. doi: 10.3389/fimmu.2020.566225
- Wang H.H., Dai Y.Q., Qiu W., Lu Z.Q., Peng F.H., Wang Y.G., Bao J., Li Y., Hu X.Q. Interleukin-17-secreting T cells in neuromyelitis optica and multiple sclerosis during relapse. J Clin Neurosci., 2011, Vol. 18, pp. 1313-1317 doi: 10.1016/j.jocn.2011.01.031
Supplementary files
