PERIPHERAL BLOOD CCR6+CXCR3– CD8+ T CELLS IN THE PATHOGENESIS OF RELAPSING-REMITTING MULTIPLE SCLEROSIS



Cite item

Full Text

Abstract

Abstract

Introduction. Multiple sclerosis (MS) is a chronic progressive neurodegenerative autoimmune disease, that is characterized by the presence of disseminated patches of demyelination in the brain and spinal cord, containing different subsets of immune cells, including CD8+ T cells. Currently, CD8+ T cells can be subdivided into three main subsets, including Tc1, Tc2 and Tc17 according to their cytokine production profile and phenotype. A balance between the cytolytic Tc1, on the one hand, and cytokine-producing Tc2 and Tc17 cell subsets, on the other hand, seems to play crucial role in emergence of diverse pathological conditions including autoimmunity. Thus, we have examined the frequency of Tc cell subsets in peripheral blood of patients with relapsing-remitting MS (MS, n=25) and sex and age matched healthy individuals (HC, n=24). Methods. To analyze the frequency of CD8+ T cell subsets we used multicolor flow cytometry. We evaluated the relative and absolute frequencies of Tc1 (CCR6–CXCR3+), Tc2 (CCR6–CXCR3–), Tc17 (CCR6+CXCR3–) and Tc17.1 (CCR6+CXCR3+) cells, as well as we measured the relative frequencies of mentioned subsets within main maturation stages of CD8+ T cell, including «naïve» (CD45RA+CD62L+), central (СМ) and effector (ЕМ) memory, and TEMRA (CD45RA+CD62L–) cells. Results. First, we noticed that the relative frequency of Tc1 was decreased in MS group vs HC, while the relative and absolute frequencies of Тс17 of Тс17.1 were significantly elevated during MS. Next, our data revealed a significant increase in the frequencies of Тс17 on all analyzed stages of CD8+ T cell maturation, that were identified in peripheral blood samples from MS patients. Furthermore, the differences with the control group were most critical in the case of ЕМ and TEMRA CD8+ T cell subsets (11,66% (4,75; 14,69) vs 2,45% (1,48; 3,89), and 4,91% (3,68; 8,63) vs 0,41% (0,11; 1,30), respectively, with р<0,001 in both cases), exhibited enhanced migratory properties to the inflammatory sites. Conclusions. Thus, we provide some new insights in the frequency of ‘polarized’ CD8+ T cell subsets in patients with MS, and the obtained data point to an important part of Tc17 cell in the pathogenesis of MS, and can be used for development of new diagnostic techniques and treatment approaches for MS.  

About the authors

Valeriy Mihajlovich Lebedev

N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences (IHB RAS), St.Petersburg, Russian Federation

Email: lebedevvaleriy@bk.ru

Head of Neurology department, neurologist, junior researcher

Russian Federation, 197022, St. Petersburg, acad. Pavlov str., 9, N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences (IHB RAS)

Olga Mihajlovna Frolova

Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", St.Petersburg, Russian Federation

Email: dr.novoselova@gmail.com

neurologist, junior researcher

Russian Federation, 197022, St. Petersburg, acad. Pavlov str., 9, N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences (IHB RAS)

Eleonora Aleksandrovna Starikova

Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", St.Petersburg, Russian Federation

Email: Starickova@yandex.ru

PhD (Biology), senior researcher

Russian Federation, 197376, St. Petersburg, acad. Pavlov str., 12, Scientific Research Institute of Experimental Medicine

Jennet Tumarovna Mammedova

Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", St.Petersburg, Russian Federation

Email: jennet_m@mail.ru

Researcher

Russian Federation, 197376, St. Petersburg, acad. Pavlov str., 12, Scientific Research Institute of Experimental Medicine

Igor Vladimirovich Kudryavtsev

Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", St.Petersburg, Russian Federation

Author for correspondence.
Email: igorek1981@yandex.ru

PhD (Biology), Head of laboratory

Russian Federation, 197376, St. Petersburg, acad. Pavlov str., 12, Scientific Research Institute of Experimental Medicine

References

  1. Annunziato F., Romagnani C., Romagnani S. The 3 major types of innate and adaptive cell-mediated effector immunity. J. Allergy. Clin. Immunol., 2015, Vol. 135, no. 3, pp. 626-635. doi: 10.1016/j.jaci.2014.11.001
  2. Kebir H., Kreymborg K., Ifergan I., Dodelet-Devillers A., Cayrol R., Bernard M., Giuliani F., Arbour N., Becher B., Prat A. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat. Med., 2007, Vol. 13, no. 10, pp. 1173-1175. doi: 10.1038/nm1651
  3. Kudryavtsev I., Benevolenskaya S., Serebriakova M., Grigor'yeva I., Kuvardin E., Rubinstein A., Golovkin A., Kalinina O., Zaikova E., Lapin S., Maslyanskiy A. Circulating CD8+ T cell subsets in primary Sjögren's syndrome. Biomedicines, 2023, Vol. 11, no. 10, pp. 2778 doi: 10.3390/biomedicines11102778
  4. Kudryavtsev I.V., Arsentieva N.A., Korobova Z.R., Isakov D.V., Rubinstein A.A., Batsunov O.K., Khamitova I.V., Kuznetsova R.N., Savin T.V., Akisheva T.V., Stanevich O.V., Lebedeva A.A., Vorobyov E.A., Vorobyova S.V., Kulikov A.N., Sharapova M.A., Pevtsov D.E., Totolian A.A. Heterogenous CD8+ T cell maturation and 'polarization' in acute and convalescent COVID-19 patients. Viruses, 2022, Vol. 14, no. 9, pp. 1906. doi: 10.3390/v14091906
  5. Lolli F., Martini H., Citro A., Franceschini D., Portaccio E., Amato M.P., Mechelli R., Annibali V., Sidney J., Sette A., Salvetti M., Barnaba V. Increased CD8+ T cell responses to apoptotic T cell-associated antigens in multiple sclerosis. J Neuroinf., 2013, Vol. 10, pp. 94. doi: 10.1186/1742-2094-10-94
  6. Loyal, L., Warth, S., Jürchott, K. et al. SLAMF7 and IL-6R define distinct cytotoxic versus helper memory CD8+ T cells. Nat. Commun., 2020, Vol. 11, pp. 6357 https://doi.org/10.1038/s41467-020-19002-6
  7. Lückel C., Picard F., Raifer H., Campos Carrascosa L., Guralnik A., Zhang Y., Klein M., Bittner S., Steffen F., Moos S., Marini F., Gloury R., Kurschus F.C., Chao Y.Y., Bertrams W., Sexl V., Schmeck B., Bonetti L., Grusdat M., Lohoff M., Zielinski C.E., Zipp F., Kallies A., Brenner D., Berger M., Bopp T., Tackenberg B., Huber M. IL-17+ CD8+ T cell suppression by dimethyl fumarate associates with clinical response in multiple sclerosis. Nat Commun., 2019, Vol. 10, no. 1, pp. 5722. doi: 10.1038/s41467-019-13731-z
  8. Mittrücker H.W., Visekruna A., Huber M. Heterogeneity in the differentiation and function of CD8+ T cells. Arch. Immunol. Ther. Exp. (Warsz), 2014, Vol. 62, no. 6, pp. 449-458. doi: 10.1007/s00005-014-0293-y
  9. Nicol B., Salou M., Vogel I., Garcia A., Dugast E., Morille J., Kilens S., Charpentier E., Donnart A., Nedellec S., Jacq-Foucher M., Le Frère F., Wiertlewski S., Bourreille A., Brouard S., Michel L., David L., Gourraud P.A., Degauque N., Nicot A.B., Berthelot L., Laplaud D.A. An intermediate level of CD161 expression defines a novel activated, inflammatory, and pathogenic subset of CD8+ T cells involved in multiple sclerosis. J Autoimmun., 2018, Vol. 88, pp. 61-74. doi: 10.1016/j.jaut.2017.10.005
  10. Reich D.S., Lucchinetti C.F., Calabresi P.A. Multiple Sclerosis. N. Engl. J. Med., 2018, Vol. 378, no. 2, pp. 169-180. doi: 10.1056/NEJMra1401483
  11. Rubinstein A., Kudryavtsev I., Arsentieva N., Korobova Z.R., Isakov D., Totolian A.A. CXCR3-Expressing T Cells in Infections and Autoimmunity. Front. Biosci. (Landmark Ed), 2024, Vol. 29, no. 8, pp. 301. doi: 10.31083/j.fbl2908301
  12. Salehi Z., Doosti R., Beheshti M., Janzamin E., Sahraian M.A., Izad M. Differential frequency of CD8+ T cell subsets in multiple sclerosis patients with various clinical patterns. PLoS ONE, 2016, Vol. 11, no. 7, pp. e0159565 https://doi.org/10.1371/journal.pone.0159565
  13. Stojić-Vukanić Z., Hadžibegović S., Nicole O., Nacka-Aleksić M., Leštarević S., Leposavić G. CD8+ T cell-mediated mechanisms contribute to the progression of neurocognitive impairment in both multiple sclerosis and Alzheimer's disease? Front Immunol., 2020, Vol. 11, pp. 566225. doi: 10.3389/fimmu.2020.566225
  14. Wang H.H., Dai Y.Q., Qiu W., Lu Z.Q., Peng F.H., Wang Y.G., Bao J., Li Y., Hu X.Q. Interleukin-17-secreting T cells in neuromyelitis optica and multiple sclerosis during relapse. J Clin Neurosci., 2011, Vol. 18, pp. 1313-1317 doi: 10.1016/j.jocn.2011.01.031

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Lebedev V.M., Frolova O.M., Starikova E.A., Mammedova J.T., Kudryavtsev I.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № 77 - 11525 от 04.01.2002.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies