INFLUENCE OF BACTERIOCINS ON THE FUNCTIONS OF INNATE IMMUNE CELLS IN VIVO AND IN VITRO



Cite item

Full Text

Abstract

Abstract

Aim. The aim of this study was to investigate the effect of warnerin and hominin, lantibiotics isolated from the growth media of Staphylococcus warneri and Staphylococcus hominis, respectively, as well as nisin and the synthetic polyamino acid poly-L-arginine, on the functional activity of innate immune cells in vivo and in vitro.

Materials and methods. The work investigated the lantibiotics warnerin (APD ID: AP02801), obtained from the growth medium of Staphylococcus warneri DSM 16081 bacteria, hominin, isolated from the growth media of Staphylococcus hominis GISK-284 and nisin from Lactococcus lactis (Sigma, USA), as well as a polycationic synthetic peptide with antibacterial properties - poly-L-arginine hydrochloride with a molecular weight of 5000-15000 Da (Sigma, USA).

In vivo studies were performed using peritoneal cells of white laboratory Swiss mice weighing 20-22 g. Leukocytes from the peripheral blood of healthy volunteer donors were used as an object of in vitro studies. The absorption activity of peritoneal cavity cells was assessed flow cytometry, and the production of reactive oxygen species was assessed using luminol-dependent chemiluminescence.

Results. It was found that warnerin and hominin reliably modulated ROS production in vivo. Both peptides enhanced ROS generation by peritoneal macrophages in the entire range of doses studied, nisin demonstrated a weaker stimulating effect, increasing ROS production only at a dose of 0.1 mg/kg. Warnerin in vivo had a statistically significant inhibitory effect on the absorptive activity of peritoneal cells, while hominin and nisin did not affect the percentage of phagocytosis in the entire range of doses studied. In vitro, warnerin in both spontaneous and stimulated tests at high concentrations inhibited, and at low concentrations stimulated, the formation of active oxygen forms. Hominin, on the contrary, enhanced the microbicidal potential in unstimulated cultures, but decreased zyozane-induced ROS production; both peptides decreased the scavenging activity of monocytes and neutrophils in vitro. Nisin and poly-L-arginine had no effect on phagocytic activity and microbicidal potential.

Conclusion. The obtained data confirm the hypothesis that antimicrobial peptides inhibit the growth of competitive microflora and have a modulating effect on innate immunity.

About the authors

Sergey Gein

Institute of Ecology and Genetics of Microorganism, Perm Federal Research Center, Russian Academy of Sciences, Perm, Russian Federation;
Perm State University, Perm, Russian Federation

Email: hein73@mail.ru
ORCID iD: 0000-0002-0799-3397

MD, director of Institute of Ecology and Genetics of Microorganisms - Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences; professor of department of microbiology and immunology Perm State National Research University

Russian Federation

Tatyana Polyudova

Institute of Ecology and Genetics of Microorganism, Perm Federal Research Center, Russian Academy of Sciences, Perm, Russian Federation

Email: poludova76@mail.ru

PhD, Researcher, head of the Laboratory of Biochemistry of Microbial Development, Institute of Ecology and Genetics of Microorganisms of the Institute of Ecology and Genetics of Microorganisms - Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences

Russian Federation

Matvey Ibatullin

Institute of Ecology and Genetics of Microorganism, Perm Federal Research Center, Russian Academy of Sciences, Perm, Russian Federation;
Perm State University, Perm, Russian Federation

Author for correspondence.
Email: manovvi@yandex.ru

master's student at the Department of Microbiology and Immunology, Perm State University; Laboratory Assistant, Laboratory of Molecular Immunology; Engineer, Laboratory of Biochemistry of Microbial Development, Institute of Ecology and Genetics of Microorganisms of the Institute of Ecology and Genetics of Microorganisms - Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences

Russian Federation

References

  1. Патент РФ. 2014. № 2528055 Patent of the Russian Federation. 2014. No. 2528055 http://www.findpatent.ru/patent/252/2528055.html
  2. Полюдова Т.В., Лемкина Л.М., Лихацкая Г.Н., Коробов В.П. Оптимизация условий получения и моделирование 3D-cтруктуры нового антибактериального пептида семейства лантибиотиков // Прикладная биохимия и микробиология. – 2017. – Т. 53 № 1. – С. 47-54. Polyudova T.V., Lyamkina Lum., Likhatskaya G.N., Korobov V.P. Optimization of the conditions for obtaining and modeling the 3D structure of a new antibacterial peptide of the lantibiotic family // Applied Biochemistry and Microbiology. – 2017. – Vol. 53 No. 1. – pp. 47-54. https://doi.org/10.7868/S0555109917010147
  3. Barbour A., Smith L., Oveisi M., Williams M., Huang R. C., Marks C., Fine N., Sun C., Younesi F., Zargaran S., Orugunty R., Horvath T. D., Haidacher S. J., Haag A. M., Sabharwal, A., Hinz, B., & Glogauer, M. Discovery of phosphorylated lantibiotics with proimmune activity that regulate the oral microbiome. Proceedings of the National Academy of Sciences of the United States of America, 2023, Vol. 120(22), e2219392120. https://doi.org/10.1073/pnas.2219392120
  4. Carson D. A., Barkema H. W., Naushad S., & De Buck, J. Bacteriocins of Non-aureus Staphylococci Isolated from Bovine Milk. Applied and environmental microbiology, 2017, Vol. 83(17), e01015-17. https://doi.org/10.1128/AEM.01015-17
  5. Cogen A. L., Yamasaki K., Muto J., Sanchez K. M., Crotty Alexander L., Tanios J., Lai Y., Kim J. E., Nizet V., Gallo R. L. Staphylococcus epidermidis antimicrobial delta-toxin (phenol-soluble modulin-gamma) cooperates with host antimicrobial peptides to kill group A Streptococcus. PloS one, 2010, Vol. 5(1), e8557. https://doi.org/10.1371/journal.pone.0008557
  6. Fernández-Fernández R., Elsherbini A. M. A., Lozano C., Martínez A., de Toro M., Zarazaga M., Peschel A., Krismer B., Torres C. Genomic Analysis of Bacteriocin-Producing Staphylococci: High Prevalence of Lanthipeptides and the Micrococcin P1 Biosynthetic Gene Clusters. Probiotics and antimicrobial proteins, 2025, Vol. 17(1), pp. 159–174. https://doi.org/10.1007/s12602-023-10119-w
  7. Field D., Fernandez de Ullivarri M., Ross R. P., Hill C. After a century of nisin research - where are we now?. FEMS microbiology reviews, 2023, Vol. 47(3), fuad023. https://doi.org/10.1093/femsre/fuad023
  8. Li J., Jin J., Li S., Zhong Y., Jin Y., Zhang X., Xia B., Zhu Y., Guo R., Sun X., Guo J., Hu F., Xiao W., Huang F., Ye H., Li R., Zhou Y., Xiang X., Yao H., Yan Q., Su L., Wu L., Luo T., Liu Y., Guo X., Qin J., Qi H., He J., Wang J., Li Z. Tonsillar Microbiome-Derived Lantibiotics Induce Structural Changes of IL-6 and IL-21 Receptors and Modulate Host Immunity. Advanced science (Weinheim, Baden-Wurttemberg, Germany), 2022, Vol. 9(30), e2202706. https://doi.org/10.1002/advs.202202706
  9. Mookherjee N., Anderson M. A., Haagsman H. P., Davidson D. J. Antimicrobial host defence peptides: functions and clinical potential. Nature reviews. Drug discovery, 2020, Vol. 19(5), pp. 311–332. https://doi.org/10.1038/s41573-019-0058-8
  10. Nakatsuji T., Chen T. H., Narala S., Chun K. A., Two A. M., Yun T., Shafiq F., Kotol P. F., Bouslimani A., Melnik A. V., Latif H., Kim J. N., Lockhart A., Artis K., David G., Taylor P., Streib J., Dorrestein P. C., Grier A., Gill S. R., Zengler K., Hata T.R. Leung D. Y. M., Gallo R. L. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Science translational medicine, 2017, Vol. 9(378), eaah4680. https://doi.org/10.1126/scitranslmed.aah4680
  11. Nakatsuji T., Gallo R. L. Antimicrobial peptides: old molecules with new ideas. The Journal of investigative dermatology, 2012, Vol. 132(3 Pt 2), pp. 887–895. https://doi.org/10.1038/jid.2011.387
  12. O'Sullivan J. N., Rea M. C., O'Connor P. M., Hill C., Ross, R. P. Human skin microbiota is a rich source of bacteriocin-producing staphylococci that kill human pathogens. FEMS microbiology ecology, 2019, Vol. 95(2), fiy241. https://doi.org/10.1093/femsec/fiy241
  13. Sanford J. A., & Gallo R. L. Functions of the skin microbiota in health and disease. Seminars in immunology, 2013, Vol. 25(5), pp. 370–377. https://doi.org/10.1016/j.smim.2013.09.005
  14. Tomic-Canic M., Burgess J. L., O'Neill K. E., Strbo N., Pastar I. Skin Microbiota and its Interplay with Wound Healing. American journal of clinical dermatology, 2020, Vol. 21(Suppl 1), pp. 36–43. https://doi.org/10.1007/s40257-020-00536-w
  15. Zhang Z. J., Cole C., Lin H., Wu C., Haro F., McSpadden E., van der Donk W. A., Pamer E. G. Exposure and resistance to lantibiotics impact microbiota composition and function. bioRxiv : the preprint server for biology, 2023.12.30.573728.
  16. https://doi.org/10.1101/2023.12.30.573728

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Gein S., Polyudova T., Ibatullin M.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № 77 - 11525 от 04.01.2002.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies