PROTEIN A-ANTIGEN CONJUGATES ENHANCE PRODUCTION OF SPECIFIC ANTIBODIES FOLLOWING INTRANASAL ADMINISTRATION



Cite item

Full Text

Abstract

Abstract

Objective. To study the immunogenic properties of protein A conjugates with the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein (B.1.617.2, Delta variant) and their ability to induce a specific humoral immune response following intranasal administration.

Materials and methods. Recombinant RBD (SARS-CoV-2, Delta variant) conjugates with Staphylococcus aureus protein A were prepared using EDC or Sulfo-SMCC (1:1 molar ratio) followed by gel filtration purification. Immunization was performed on 80 six-week-old Balb/c mice, divided into groups of 10 animals. Experimental groups received intranasal administration of 20 µL conjugate (50 µg RBD) twice at a 14-day interval, while control groups received intramuscular RBD or saline. Blood was collected 10 days after boosting. Specific IgG titers were determined by ELISA using RBD as the antigen. Statistical significance was assessed using the Mann-Whitney U test (GraphPad Prism 8.0, p < 0.05).

Results. Intranasal administration of RBD-protein A conjugates (Con-S and Con-E) induced high specific IgG titers (up to 10⁵), comparable to intramuscular RBD immunization. Both conjugates showed statistically significant enhancement of the immune response compared to intranasal administration of free RBD (p ≤ 0.05). However, response heterogeneity was observed among animals, with some mice exhibiting a weak immune response, likely due to intranasal delivery variability.

Conclusions. RBD-protein A conjugates elicit a robust IgG response upon intranasal administration, comparable to intramuscular immunization, confirming the adjuvant properties of protein A. Both conjugation methods (Sulfo-SMCC and EDC) were equally effective. Despite response variability linked to mucosal delivery, these findings support the potential of protein A in developing intranasal vaccines against SARS-CoV-2.

About the authors

Ekaterina Alexandrovna Volosnikova

State Research Center of Virology and Biotechnology “Vector”

Email: kulenok84@mail.ru
ORCID iD: 0000-0001-5028-5647
SPIN-code: 9548-7439
Scopus Author ID: 36626467100

Leading Researcher, Head of the Departament of Technology Development and Pilot Production of Biologicals

Russian Federation, 630559, Koltsovo, Novosibirsk region, Russian Federation

Natalia Vyacheslavovna Volkova

State Research Center of Virology and Biotechnology “Vector”

Email: tasha_wolkowa11.93@mail.ru
ORCID iD: 0000-0001-5010-9424

Candidate of Science (Biology)

Researcher at the Laboratory of Molecular and Synthetic Biology

Russian Federation, 630559, Koltsovo, Novosibirsk region, Russian Federation

Sergey Igorevich Gayvoronskiy

State Research Center of Virology and Biotechnology “Vector”

Email: gsi0902@mail.ru
ORCID iD: 0009-0004-0276-7229

Intern researcher at the Laboratory of Molecular and Synthetic Biology

Russian Federation, 630559, Koltsovo, Novosibirsk region, Russian Federation

Olga Vladimirovna Simakova

State Research Center of Virology and Biotechnology “Vector”

Email: simakova_ov@vector.nsc.ru
ORCID iD: 0000-0002-1222-7574
SPIN-code: 6507-5706
Scopus Author ID: 58095900900

Junior researcher at the Department of Biological Studies

Russian Federation, 630559, Koltsovo, Novosibirsk region, Russian Federation

Tatiana Igorevna Esina

State Research Center of Virology and Biotechnology “Vector”

Email: esina_ti@vector.nsc.ru
ORCID iD: 0000-0001-9006-8313
SPIN-code: 8342-0830
Scopus Author ID: 57190121468

Researcher at the Departament of Technology Development and Pilot Production of Biologicals

Russian Federation, 630559, Koltsovo, Novosibirsk region, Russian Federation

Anastasia Anatolevna Rar

State Research Center of Virology and Biotechnology “Vector”

Email: rar_aa@vector.nsc.ru
ORCID iD: 0009-0000-2652-8434

Engineer microbiologist at the Departament of Technology Development and Pilot Production of Biologicals

Russian Federation, 630559, Koltsovo, Novosibirsk region, Russian Federation

Dmitry Nikolaevich Shcherbakov

State Research Center of Virology and Biotechnology “Vector”

Author for correspondence.
Email: dnshcherbakov@gmail.com
ORCID iD: 0000-0001-8023-4453
SPIN-code: 9616-0933
Scopus Author ID: 37027118800

Candidate of Science (Biology)

Leading Researcher, Head of the Laboratory of Molecular and Synthetic Biology

Russian Federation, 630559, Koltsovo, Novosibirsk region, Russian Federation

References

  1. Андреев Ю.Ю., Топтыгина А.П. Адъюванты и иммуномодуляторы в составе вакцин //Иммунология. – 2021. – Т. 42, №. 6. – С. 720-729. Andreev Y.Y., Toptygina A.P. Adjuvants and immunomodulators in vaccines. Immunologiya = Immunologiya, 2021, Vol. 42, no. 6, pp. 720-729. (In Russ.) https://doi.org/10.33029/0206-4952-2021-42-6-720-729
  2. Дьякон А.В., Хрыкина И.С., Хегай А.А., Дьяченко И.А., Мурашев А.Н., Ивашев М.Н. Метод забора крови у животных //Международный журнал прикладных и фундаментальных исследований. – 2013. – Т. 11, №1. – С. 84-85. D'yakon A.V., Khrykina I.S., Khegay A.A., D'yachenko I.A., Murashev A.N., Ivashev M.N. Method of blood sampling in animals. Mezhdunarodnyi zhurnal prikladnykh i fundamental'nykh issledovanii = International Journal of Applied and Fundamental Research, 2013, Vol. 11, no.2, pp. 84-85. (In Russ.) https://applied-research.ru/ru/article/view?id=4434
  3. Borges O., Borchard G. Mucosal vaccination: opportunities and challenges. In: Novel immune potentiators and delivery technologies for next generation vaccines. Springer US, 2013, pp. 65-80. - https://doi.org/10.1007/978-1-4614-5380-2_3
  4. Eriksson K., Holmgren J. Recent advances in mucosal vaccines and adjuvants. Curr. Opin. Immunol., 2002, Vol. 14, no. 5, pp. 666-672. - https://doi.org/10.1016/s0952-7915(02)00384-9
  5. Holmgren J., Czerkinsky C. Mucosal immunity and vaccines. Nat. Med., 2005, Vol. 11, no. 4 Suppl, pp. S45-S53. - https://doi.org/10.1038/nm1213
  6. Kim M.Y., Vergara E., Tran A., Paul M.J., Kwon T.H., Ma J.K.C., Jang Y.S., Reljic R. Marked enhancement of the immunogenicity of plant-expressed IgG-Fc fusion proteins by inclusion of cholera toxin non-toxic B subunit within the single polypeptide. Plant Biotechnol. J., 2024, Vol. 22, no. 5, pp. 1402-1416. - https://doi.org/10.1111/pbi.14275
  7. Li M., Wang Y., Sun Y., Cui H., Zhu S.J., Qiu H.J. Mucosal vaccines: Strategies and challenges. Immunol. Lett., 2020, Vol. 217, pp. 116-125. - https://doi.org/10.1016/j.imlet.2019.10.013
  8. Lycke N. Recent progress in mucosal vaccine development: Potential and limitations. Nat. Rev. Immunol., 2012, Vol. 12, pp. 592–605. - https://doi.org/10.1038/nri3251
  9. Puga-Gómez R., Ricardo-Delgado Y., Rojas-Iriarte C., Céspedes-Henriquez L., Piedra-Bello M., Vega-Mendoza D., Pérez N.P., Paredes-Moreno B., Rodríguez-González M., Valenzuela-Silva C., Sánchez-Ramírez B., Rodríguez-Noda L, Pérez-Nicado R., González-Mugica R., Hernández-García T., Fundora-Barrios T., Echevarría M.D., Enriquez-Puertas J.M., Infante-Hernández Y., Palenzuela-Díaz A., Gato-Orozco E., Chappi-Estévez Y., Francisco-Pérez J.C., Suarez-Martinez M., Castillo-Quintana I.C., Fernandez-Castillo S., Climent-Ruiz Y., Santana-Mederos D., García-Vega Y., Toledo-Romani M.E., Doroud D., Biglari A., Valdés-Balbín Y., García-Rivera D., Vérez-Bencomo V.; SOBERANA Research Group. Open-label phase I/II clinical trial of SARS-CoV-2 receptor binding domain-tetanus toxoid conjugate vaccine (FINLAY-FR-2) in combination with receptor binding domain-protein vaccine (FINLAY-FR-1A) in children. Int. J. Infect. Dis., 2023, Vol. 126, pp. 164-173. - https://doi.org/10.1016/j.ijid.2022.11.016
  10. Silverman G.J., Goodyear C.S., Siegel, D.L. On the mechanism of staphylococcal protein A immunomodulation. Transfusion, 2005, Vol. 45, no. 2, pp. 274-280. - https://doi.org/10.1111/j.1537-2995.2004.04333.x
  11. Xing M., Hu G., Wang X., Wang Y., He F., Dai W., Wang X., Niu Y., Liu J., Liu H., Zhang X., Xu J., Cai Q., Zhou D. An intranasal combination vaccine induces systemic and mucosal immunity against COVID-19 and influenza. N.P.J. Vaccines, 2024, Vol. 9, no. 1, article number: 64. - https://doi.org/10.1038/s41541-024-00857-5
  12. Yuki Y., Kiyono H. Mucosal vaccines: novel advances in technology and delivery. Expert Rev. Vaccines, 2009, Vol. 8, no. 8, pp. 1083-1097. - https://doi.org/10.1586/erv.09.61
  13. Zhao T., Liu S., Wang P., Zhang Y., Kang X., Pan X., Li L., Li D., Gao P., An Y., Song H., Liu K., Qi J., Zhao X., Dai L., Liu P., Wang P., Wu G., Zhu T., Xu K., Li Y., Gao G.F. Protective RBD-dimer vaccines against SARS-CoV-2 and its variants produced in glycoengineered Pichia pastoris. PLoS Pathog., 2024, Vol. 20, no. 8, article number: e1012487. - https://doi.org/10.1371/journal.ppat.1012487

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Volosnikova E.A., Volkova N.V., Gayvoronskiy S.I., Simakova O.V., Esina T.I., Rar A.A., Shcherbakov D.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № 77 - 11525 от 04.01.2002.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies