EFFICACY AND SAFETY OF BACTERIAL-BASED CANCER THERAPIES: A META-ANALYSIS OF PRECLINICAL AND CLINICAL STUDIES
- Авторы: Matreja P.S.1, Singh V.1, Kumar A.1, Singh S.1
-
Учреждения:
- Teerthanker Mahaveer University, Moradabad, UP, India
- Раздел: ОБЗОРЫ
- Дата подачи: 25.07.2025
- Дата принятия к публикации: 07.08.2025
- URL: https://rusimmun.ru/jour/article/view/17295
- DOI: https://doi.org/10.46235/1028-7221-17295-EAS
- ID: 17295
Цитировать
Полный текст
Аннотация
AbstractCancer remains one of the leading causes of morbidity and mortality worldwide, despite significant advancements in conventional therapies such as chemotherapy, radiotherapy, and immunotherapy. However, these approaches often come with severe side effects, treatment resistance, and limited efficacy in certain tumor types, underscoring the urgent need for alternative therapeutic strategies. This meta-analysis explores the therapeutic potential and safety profile of bacterial-based cancer therapies through a systematic review of both preclinical and clinical studies. By targeting the unique properties of the tumor microenvironment, specific bacterial species have shown an ability to preferentially colonize cancerous tissues, modulate immune responses, and serve as delivery vehicles for therapeutic agents. In preclinical models, bacterial treatments demonstrated significant tumor growth inhibition and improved survival outcomes, with minimal systemic toxicity. Clinical trials evaluated a range of bacterial species including engineered forms of Salmonella, Listeria, Clostridium, and Bifidobacterium. Findings indicated varied levels of efficacy in terms of tumor response rates, progression-free survival, and overall survival across different patient cohorts. While some bacterial therapies were associated with notable therapeutic benefits, particularly in prolonging survival and enhancing immune activation, others showed limited efficacy or were accompanied by high rates of adverse events, especially in treatments involving Listeria-based agents. Conversely, Bifidobacterium-based therapies appeared to offer a more favorable safety profile. The heterogeneity in outcomes highlights the influence of bacterial strain, tumor type, dosage, and treatment combinations. This analysis concludes that bacterial-based therapies represent a promising frontier in oncology, offering a unique mechanism of action and potential synergy with existing treatments. Nevertheless, further large-scale and controlled clinical studies are necessary to optimize bacterial selection, enhance delivery mechanisms, and mitigate toxicity risks. Advancing this therapeutic modality could significantly contribute to the development of more personalized, targeted, and effective cancer treatments in the future.
Ключевые слова
Об авторах
Prithpal Matreja
Teerthanker Mahaveer University, Moradabad, UP, India
Email: Singhmatrejaprithpal@gmail.com
MD, Professor of Pharmacology
ИндияV. K. Singh
Teerthanker Mahaveer University, Moradabad, UP, India
Email: Drvinodkumarsingh85@gmail.com
MD, Professor of Medicine
Индия, TMU MORADABADAjay Kumar
Teerthanker Mahaveer University, Moradabad, UP, India
Email: drajaykumar30july@gmail.com
MD, Professor of Medicine
Индия, TMU MORADABADSudhir Singh
Teerthanker Mahaveer University, Moradabad, UP, India
Автор, ответственный за переписку.
Email: singhdrsudhir4@gmail.com
MD, Professor of Microbiology
Индия, TMU MoRADABADСписок литературы
- Badie, F.; Ghandali, M.; Tabatabaei, S. A.; Safari, M.; Khorshidi, A.; Shayestehpour, M.; Mahjoubin-Tehran, M.; Morshedi, K.; Jalili, A.; Tajiknia, V.; Hamblin, M. R.; Mirzaei, H. Use of Salmonella Bacteria in Cancer Therapy: Direct, Drug Delivery and Combination Approaches. Front. Oncol. 2021, 11, 624759. https://doi.org/10.3389/fonc.2021.624759. — https://doi.org/10.3389/fonc.2021.624759
- Basu, P.; Mehta, A.; Jain, M.; Gupta, S.; Nagarkar, R. V.; John, S.; Petit, R. A Randomized Phase 2 Study of ADXS11-001 Listeria Monocy’togenes-Listeriolysin O Immunotherapy With or Without Cisplatin in Treatment of Advanced Cervical Cancer. International Journal of Gynecological Cancer 2018, 28 (4), 764–772. https://doi.org/10.1097/IGC.0000000000001235. — https://doi.org/10.1097/IGC.0000000000001235
- Biot, C.; Rentsch, C. A.; Gsponer, J. R.; Birkhäuser, F. D.; Jusforgues-Saklani, H.; Lemaître, F.; Auriau, C.; Bachmann, A.; Bousso, P.; Demangel, C.; Peduto, L.; Thalmann, G. N.; Albert, M. L. Preexisting BCG-Specific T Cells Improve Intravesical Immunotherapy for Bladder Cancer. Sci. Transl. Med. 2012, 4 (137). https://doi.org/10.1126/scitranslmed.3003586. — https://doi.org/10.1126/scitranslmed.3003586
- Brockstedt, D G.; Giedlin, M. A.; Leong, M. L.; Bahjat, K. S.; Gao, Y.; Luckett, W.; Liu, W.; Cook, D. N.; Portnoy, D. A.; Dubensky, T. W. Listeria -Based Cancer Vaccines That Segregate Immunogenicity from Toxicity. Proc. Natl. Acad. Sci. U.S.A. 2004, 101 (38), 13832–13837. https://doi.org/10.1073/pnas.0406035101. — https://doi.org/10.1073/pnas.0406035101
- Brockstedt, D G.; Le, D. T.; Hassan, R.; Murphy, A.; Grous, J.; Dubensky, T. W.; Jaffee, E. M. Clinical Experience with Live-Attenuated, Double-Deleted (LADD) Listeria Monocytogenes Targeting Mesothelin-Expressing Tumors. j. immunotherapy cancer 2013, 1 (S1), P203, 20511426-1-S1-P203. https://doi.org/survical. — https://doi.org/survical
- Cheong, I.; Huang, X.; Bettegowda, C.; Diaz, L. A.; Kinzler, K. W.; Zhou, S.; Vogelstein, B. A Bacterial Protein Enhances the Release and Efficacy of Liposomal Cancer Drugs. Science 2006, 314 (5803), 1308–1311. https://doi.org/10.1126/science.1130651. — https://doi.org/10.1126/science.1130651
- Dizman, N.; Meza, L.; Bergerot, P.; Alcantara, M.; Dorff, T.; Lyou, Y.; Frankel, P.; Cui, Y.; Mira, V.; Llamas, M.; Hsu, J.; Zengin, Z.; Salgia, N.; Salgia, S.; Malhotra, J.; Chawla, N.; ChehraziRaffle, A.; Muddasani, R.; Gillece, J.; Reining, L.; Trent, J.; Takahashi, M.; Oka, K.; Higashi, S.; Kortylewski, M.; Highlander, S. K.; Pal, S. K. Nivolumab plus Ipilimumab with or without Live Bacterial Supplementation in Metastatic Renal Cell Carcinoma: A Randomized Phase 1 Trial. Nature Medicine 2022, 28 (4), 704–712. https://doi.org/10.1038/s41591-022-01694-6. — https://doi.org/10.1038/s41591-022-01694-6
- Duong, M T.-Q.; Qin, Y.; You, S.-H.; Min, J.-J. Bacteria-Cancer Interactions: Bacteria-Based Cancer Therapy. Exp Mol Med 2019, 51 (12), 1–15. https://doi.org/10.1038/s12276-019-0297-0. — https://doi.org/10.1038/s12276-019-0297-0
- Ebrahimi, H.; Dizman, N.; Meza, L.; Malhotra, J.; Li, X.; Dorff, T.; Frankel, P.; Llamas-Quitiquit, M.; Hsu, J.; Zengin, Z. B.; Alcantara, M.; Castro, D.; Mercier, B.; Chawla, N.; Chehrazi-Raffle, A.; Barragan-Carrillo, R.; Jaime-Casas, S.; Govindarajan, A.; Gillece, J.; Trent, J.; Lee, P. P.; —
- Felgner, S.; Kocijancic, D.; Frahm, M.; Weiss, S. Bacteria in Cancer Therapy: Renaissance of an Old Concept. International Journal of Microbiology 2016, 2016, 1–14. https://doi.org/10.1155/2016/8451728. — https://doi.org/10.1155/2016/8451728
- Gholami, A.; Mohkam, M.; Soleimanian, S.; Sadraeian, M.; Lauto, A. Bacterial Nanotechnology as a Paradigm in Targeted Cancer Therapeutic Delivery and Immunotherapy. Microsyst Nanoeng 2024, 10 (1), 113. https://doi.org/10.1038/s41378-024-00743-z. — https://doi.org/10.1038/s41378-024-00743-z
- Guo, C Bifidobacterium Breve as a Delivery Vector of IL-24 Gene Therapy for Head and Neck Squamous Cell Carcinoma in Vivo. Gene Ther 2017, 24 (11), 699–705. https://doi.org/10.1038/gt.2017.74. — https://doi.org/10.1038/gt.2017.74
- Gupta, K H.; Nowicki, C.; Giurini, E. F.; Marzo, A. L.; Zloza, A. Bacterial-Based Cancer Therapy (BBCT): Recent Advances, Current Challenges, and Future Prospects for Cancer Immunotherapy. Vaccines 2021, 9 (12), 1497. https://doi.org/10.3390/vaccines9121497. — https://doi.org/10.3390/vaccines9121497
- Hassan, R.; Alley, E.; Kindler, H.; Antonia, S.; Jahan, T.; Honarmand, S.; Nair, N.; Whiting, C. C.; Enstrom, A.; Lemmens, E.; Tsujikawa, T.; Kumar, S.; Choe, G.; Thomas, A.; McDougall, K.; Murphy, A. L.; Jaffee, E.; Coussens, L. M.; Brockstedt, D. G. Clinical Response of LiveAttenuated, Listeria Monocytogenes Expressing Mesothelin (CRS-207) with Chemotherapy in Patients with Malignant Pleural Mesothelioma. Clinical Cancer Research 2019, 25 (19), 5787– 5798. https://doi.org/10.1158/1078-0432.CCR-19-0070. — https://doi.org/10.1158/1078-0432.CCR-19-0070
- Howard, F H. N.; Al‐Janabi, H.; Patel, P.; Cox, K.; Smith, E.; Vadakekolathu, J.; Pockley, A. G.; Conner, J.; Nohl, J. F.; Allwood, D. A.; Collado‐Rojas, C.; Kennerley, A.; Staniland, S.; Muthana, Nanobugs as Drugs: Bacterial Derived Nanomagnets Enhance Tumor Targeting and Oncolytic Activity of HSV‐1 Virus. Small 2022, 18 (13), 2104763. https://doi.org/10.1002/smll.202104763. — https://doi.org/10.1002/smll.202104763
- Huh, W K.; Brady, W. E.; Fracasso, P. M.; Dizon, D. S.; Powell, M. A.; Monk, B. J.; Leath, C. A.; Landrum, L. M.; Tanner, E. J.; Crane, E. K.; Ueda, S.; McHale, M. T.; Aghajanian, C. Phase II Study of Axalimogene Filolisbac (ADXS-HPV) for Platinum-Refractory Cervical Carcinoma: An NRG Oncology/Gynecologic Oncology Group Study. Gynecologic Oncology 2020, 158 (3), 562–569. https://doi.org/10.1016/j.ygyno.2020.06.493. — https://doi.org/10.1016/j.ygyno.2020.06.493
- Ijaz, M.; Hasan, I.; Chaudhry, T. H.; Huang, R.; Zhang, L.; Hu, Z.; Tan, Q.; Guo, B. Bacterial Derivatives Mediated Drug Delivery in Cancer Therapy: A New Generation Strategy. J Nanobiotechnol 2024, 22 (1), 510. https://doi.org/10.1186/s12951-024-02786-w. — https://doi.org/10.1186/s12951-024-02786-w
- Kwon, S.-Y.; Thi-Thu Ngo, H.; Son, J.; Hong, Y.; Min, J.-J. Exploiting Bacteria for Cancer Immunotherapy. Nat Rev Clin Oncol 2024, 21 (8), 569–589. https://doi.org/10.1038/s41571-02400908-9. — https://doi.org/10.1038/s41571-02400908-9
- Lai, M G.; Zhang, R.; Wang, L.-S.; Zeng, W. S. Bifidobacteria Expressing Tumstatin Protein for Antitumor Therapy in Tumor-Bearing Mice. Technol Cancer Res Treat 2016, 15 (3), 498–508. https://doi.org/10.1177/1533034615581977. — https://doi.org/10.1177/1533034615581977
- Le, D T.; Wang-Gillam, A.; Picozzi, V.; Greten, T. F.; Crocenzi, T.; Springett, G.; Morse, M.; Zeh, H.; Cohen, D.; Fine, R. L.; Onners, B.; Uram, J. N.; Laheru, D. A.; Lutz, E. R.; Solt, S.; Murphy, A. L.; Skoble, J.; Lemmens, E.; Grous, J.; Dubensky, T.; Brockstedt, D. G.; Jaffee, E. Safety and Survival With GVAX Pancreas Prime and Listeria Monocytogenes –Expressing Mesothelin (CRS-207) Boost Vaccines for Metastatic Pancreatic Cancer. Journal of Clinical Oncology 2015, 33 (12), 1325–1333. https://doi.org/10.1200/JCO.2014.57.4244. — https://doi.org/10.1200/JCO.2014.57.4244
- Liang, S.; Wang, C.; Shao, Y.; Wang, Y.; Xing, D.; Geng, Z. Recent Advances in BacteriaMediated Cancer Therapy. Front. Bioeng. Biotechnol. 2022, 10, 1026248. https://doi.org/10.3389/fbioe.2022.1026248. — https://doi.org/10.3389/fbioe.2022.1026248
- Liu, X.; Wu, M.; Wang, M.; Duan, Y.; Phan, C.; Qi, G.; Tang, G.; Liu, B. Metabolically Engineered Bacteria as Light-Controlled Living Therapeutics for Anti-Angiogenesis Tumor Therapy. Mater. Horiz. 2021, 8 (5), 1454–1460. https://doi.org/10.1039/D0MH01582B. — https://doi.org/10.1039/D0MH01582B
- Lou, X.; Chen, Z.; He, Z.; Sun, M.; Sun, J. Bacteria-Mediated Synergistic Cancer Therapy: Small Microbiome Has a Big Hope. Nano-Micro Lett. 2021, 13 (1), 37. https://doi.org/10.1007/s40820020-00560-9. — https://doi.org/10.1007/s40820020-00560-9
- Lu, J.; Tong, Q. From Pathogenesis to Treatment: The Impact of Bacteria on Cancer. Front. Microbiol. 2024, 15, 1462749. https://doi.org/10.3389/fmicb.2024.1462749. — https://doi.org/10.3389/fmicb.2024.1462749
- Morales, A.; Eidinger, D.; Bruce, A. W. Intracavitary Bacillus Calmette-Guerin in the Treatment of Superficial Bladder Tumors. Journal of Urology 1976, 116 (2), 180–182. https://doi.org/10.1016/S0022-5347(17)58737-6. — https://doi.org/10.1016/S0022-5347(17)58737-6
- Moreo, E.; Uranga, S.; Picó, A.; Gómez, A. B.; Nardelli-Haefliger, D.; Del Fresno, C.; Murillo, I.; Puentes, E.; Rodríguez, E.; Vales-Gómez, M.; Pardo, J.; Sancho, D.; Martín, C.; Aguilo, N. Novel Intravesical Bacterial Immunotherapy Induces Rejection of BCG-Unresponsive Established Bladder Tumors. J Immunother Cancer 2022, 10 (7), e004325. https://doi.org/10.1136/jitc-2021-004325. — https://doi.org/10.1136/jitc-2021-004325
- Ngo, N.; Choucair, K.; Creeden, J. F.; Qaqish, H.; Bhavsar, K.; Murphy, C.; Lian, K.; Albrethsen, M. T.; Stanbery, L.; Phinney, R. C.; Brunicardi, F. C.; Dworkin, L.; Nemunaitis, J. Bifidobacterium SPP : The Promising Trojan Horse in the Era of Precision Oncology. Future Oncol. 2019, 15 (33), 3861–3876. https://doi.org/10.2217/fon-2019-0374. — https://doi.org/10.2217/fon-2019-0374
- Nguyen, D.-H.; Chong, A.; Hong, Y.; Min, J.-J. Bioengineering of Bacteria for Cancer Immunotherapy. Nat Commun 2023, 14 (1), 3553. https://doi.org/10.1038/s41467-023-39224-8. — https://doi.org/10.1038/s41467-023-39224-8
- Nuyts, S.; Van Mellaert, L.; Theys, J.; Landuyt, W.; Lambin, P.; Anné, J. Clostridium Spores for Tumor-Specific Drug Delivery: Anti-Cancer Drugs 2002, 13 (2), 115–125. https://doi.org/10.1097/00001813-200202000-00002. — https://doi.org/10.1097/00001813-200202000-00002
- Pal, S K. Cabozantinib and Nivolumab with or without Live Bacterial Supplementation in Metastatic Renal Cell Carcinoma: A Randomized Phase 1 Trial. Nature Medicine 2024, 30 (9), 2576–2585. https://doi.org/10.1038/s41591-024-03086-4. — https://doi.org/10.1038/s41591-024-03086-4
- Parks, T P.; Takahashi, M.; Hayashi, A.; Kortylewski, M.; Caporaso, J. G.; Lee, K.; Tripathi, A.; —
- Patyar, S.; Joshi, R.; Byrav, D. P.; Prakash, A.; Medhi, B.; Das, B. Bacteria in Cancer Therapy: A Novel Experimental Strategy. J Biomed Sci 2010, 17 (1), 21. https://doi.org/10.1186/1423-012717-21. — https://doi.org/10.1186/1423-012717-21
- Sedighi, M.; Zahedi Bialvaei, A.; Hamblin, M. R.; Ohadi, E.; Asadi, A.; Halajzadeh, M.; Lohrasbi, V.; Mohammadzadeh, N.; Amiriani, T.; Krutova, M.; Amini, A.; Kouhsari, E. Therapeutic Bacteria to Combat Cancer; Current Advances, Challenges, and Opportunities. Cancer Medicine 2019, 8 (6), 3167–3181. https://doi.org/10.1002/cam4.2148. — https://doi.org/10.1002/cam4.2148
- Shi, L.; Sheng, J.; Wang, M.; Luo, H.; Zhu, J.; Zhang, B.; Liu, Z.; Yang, X. Combination Therapy of TGF-β Blockade and Commensal-Derived Probiotics Provides Enhanced Antitumor Immune Response and Tumor Suppression. Theranostics 2019, 9 (14), 4115–4129. https://doi.org/10.7150/thno.35131. León-Letelier, R. A.; Castro-Medina, D. I.; Badillo-Godinez, O.; Tepale-Segura, A.; HuanostaMurillo, E.; Aguilar-Flores, C.; De León-Rodríguez, S. G.; Mantilla, A.; Fuentes-Pananá, E. M.; López-Macías, C.; Bonifaz, L. C. Induction of Progenitor Exhausted Tissue-Resident Memory CD8+ T Cells Upon Salmonella Typhi Porins Adjuvant Immunization Correlates With Melanoma Control and Anti-PD-1 Immunotherapy Cooperation. Front. Immunol. 2020, 11, 583382. https://doi.org/10.3389/fimmu.2020.583382. — https://doi.org/10.7150/thno.35131
- Shi, L.; Liu, X.; Li, Y.; Li, S.; Wu, W.; Gao, X.; Liu, B. Living Bacteria‐Based ImmunoPhotodynamic Therapy: Metabolic Labeling of Clostridium Butyricum for Eradicating Malignant Melanoma. Advanced Science 2022, 9 (14), 2105807. https://doi.org/10.1002/advs.202105807. — https://doi.org/10.1002/advs.202105807
- Sieow, B F.-L.; Wun, K. S.; Yong, W. P.; Hwang, I. Y.; Chang, M. W. Tweak to Treat: Reprograming Bacteria for Cancer Treatment. Trends Cancer 2021, 7 (5), 447–464. https://doi.org/10.1016/j.trecan.2020.11.004. — https://doi.org/10.1016/j.trecan.2020.11.004
- Sivan, A.; Corrales, L.; Hubert, N.; Williams, J. B.; Aquino-Michaels, K.; Earley, Z. M.; Benyamin, F. W.; Man Lei, Y.; Jabri, B.; Alegre, M.-L.; Chang, E. B.; Gajewski, T. F. Commensal Bifidobacterium Promotes Antitumor Immunity and Facilitates Anti–PD-L1 Efficacy. Science 2015, 350 (6264), 1084–1089. https://doi.org/10.1126/science.aac4255. — https://doi.org/10.1126/science.aac4255
- Song, S.; Vuai, M. S.; Zhong, M. The Role of Bacteria in Cancer Therapy – Enemies in the Past, but Allies at Present. Infect Agents Cancer 2018, 13 (1), 9. https://doi.org/10.1186/s13027-0180180-y. — https://doi.org/10.1186/s13027-0180180-y
- Stein, M N.; Fong, L.; Tutrone, R.; Mega, A.; Lam, E. T.; Parsi, M.; Vangala, S.; Gutierrez, A. A.; Haas, N. B. ADXS31142 Immunotherapy ± Pembrolizumab Treatment for Metastatic Castration-Resistant Prostate Cancer: Open-Label Phase I/II KEYNOTE-046 Study. The Oncologist 2022, 27 (6), 453–461. https://doi.org/10.1093/oncolo/oyac048. — https://doi.org/10.1093/oncolo/oyac048
- Sun, R.; Liu, M.; Lu, J.; Chu, B.; Yang, Y.; Song, B.; Wang, H.; He, Y. Bacteria Loaded with Glucose Polymer and Photosensitive ICG Silicon-Nanoparticles for Glioblastoma Photothermal Immunotherapy. Nat Commun 2022, 13 (1), 5127. https://doi.org/10.1038/s41467-022-32837-5. — https://doi.org/10.1038/s41467-022-32837-5
- Tomita, Y.; Ikeda, T.; Sakata, S.; Saruwatari, K.; Sato, R.; Iyama, S.; Jodai, T.; Akaike, K.; Ishizuka, S.; Saeki, S.; Sakagami, T. Association of Probiotic Clostridium Butyricum Therapy with Survival and Response to Immune Checkpoint Blockade in Patients with Lung Cancer. Cancer Immunology Research 2020, 8 (10), 1236–1242. https://doi.org/10.1158/2326-6066.CIR20-0051. — https://doi.org/10.1158/2326-6066.CIR20-0051
- Toso, J F.; Gill, V. J.; Hwu, P.; Marincola, F. M.; Restifo, N. P.; Schwartzentruber, D. J.; Sherry, R. M.; Topalian, S. L.; Yang, J. C.; Stock, F.; Freezer, L. J.; Morton, K. E.; Seipp, C.; Haworth, L.; Mavroukakis, S.; White, D.; MacDonald, S.; Mao, J.; Sznol, M.; Rosenberg, S. A. Phase I Study of the Intravenous Administration of Attenuated Salmonella Typhimurium to Patients With Metastatic Melanoma. Journal of Clinical Oncology 2002, 20 (1), 142–152. https://doi.org/10.1200/JCO.2002.20.1.142. — https://doi.org/10.1200/JCO.2002.20.1.142
- Wang, L.; Vuletic, I.; Deng, D.; Crielaard, W.; Xie, Z.; Zhou, K.; Zhang, J.; Sun, H.; Ren, Q.; —
- Wei, C.; Xun, A. Y.; Wei, X. X.; Yao, J.; Wang, J. Y.; Shi, R. Y.; Yang, G. H.; Li, Y. X.; Xu, Z. L.; —
- Wood, L M.; Paterson, Y. Attenuated Listeria Monocytogenes: A Powerful and Versatile Vector for the Future of Tumor Immunotherapy. Front. Cell. Infect. Microbiol. 2014, 4. https://doi.org/10.3389/fcimb.2014.00051. Van Pijkeren, J. P.; Morrissey, D.; Monk, I. R.; Cronin, M.; Rajendran, S.; O’Sullivan, G. C.; Gahan, C. G. M.; Tangney, M. A Novel Listeria Monocytogenes -Based DNA Delivery System for Cancer Gene Therapy. Human Gene Therapy 2010, 21 (4), 405–416. https://doi.org/10.1089/hum.2009.022. — https://doi.org/10.3389/fcimb.2014.00051
- Xu, W.; Ren, D.; Yu, Z.; Hou, J.; Huang, F.; Gan, T.; Ji, P.; Zhang, C.; Ma, L.; Hu, Y. BacteriaMediated Tumor Immunotherapy via Photothermally-Programmed PD1 Expression. Nanoscale Adv. 2022, 4 (6), 1577–1586. https://doi.org/10.1039/D1NA00857A. — https://doi.org/10.1039/D1NA00857A
- Xu, H.; Piao, L.; Wu, Y.; Liu, X. IFN-γ Enhances the Antitumor Activity of Attenuated Salmonella-Mediated Cancer Immunotherapy by Increasing M1 Macrophage and CD4 and CD8 T Cell Counts and Decreasing Neutrophil Counts. Front. Bioeng. Biotechnol. 2022, 10, 996055. https://doi.org/10.3389/fbioe.2022.996055. — https://doi.org/10.3389/fbioe.2022.996055
- Yan, S.; Gan, Y.; Xu, H.; Piao, H. Bacterial Carrier-Mediated Drug Delivery Systems: A Promising Strategy in Cancer Therapy. Front. Bioeng. Biotechnol. 2025, 12, 1526612. https://doi.org/10.3389/fbioe.2024.1526612. — https://doi.org/10.3389/fbioe.2024.1526612
- Yazawa, K.; Fujimori, M.; Amano, J.; Kano, Y.; Taniguchi, S. Bifidobacterium Longum as a Delivery System for Cancer Gene Therapy: Selective Localization and Growth in Hypoxic Tumors. Cancer Gene Ther 2000, 7 (2), 269–274. https://doi.org/10.1038/sj.cgt.7700122. — https://doi.org/10.1038/sj.cgt.7700122
- Yi, X.; Zhou, H.; Chao, Y.; Xiong, S.; Zhong, J.; Chai, Z.; Yang, K.; Liu, Z. Bacteria-Triggered Tumor-Specific Thrombosis to Enable Potent Photothermal Immunotherapy of Cancer. Sci. Adv. 2020, 6 (33), eaba3546. https://doi.org/10.1126/sciadv.aba3546. — https://doi.org/10.1126/sciadv.aba3546
- Zheng, P.; Fan, M.; Liu, H.; Zhang, Y.; Dai, X.; Li, H.; Zhou, X.; Hu, S.; Yang, X.; Jin, Y.; Yu, N.; Guo, S.; Zhang, J.; Liang, X.-J.; Cheng, K.; Li, Z. Self-Propelled and Near-InfraredPhototaxic Photosynthetic Bacteria as Photothermal Agents for Hypoxia-Targeted Cancer Therapy. ACS Nano 2021, 15 (1), 1100–1110. https://doi.org/10.1021/acsnano.0c08068. — https://doi.org/10.1021/acsnano.0c08068
Дополнительные файлы
