EFFICACY AND SAFETY OF BACTERIAL-BASED CANCER THERAPIES: A META-ANALYSIS OF PRECLINICAL AND CLINICAL STUDIES



Цитировать

Полный текст

Аннотация

AbstractCancer remains one of the leading causes of morbidity and mortality worldwide, despite significant advancements in conventional therapies such as chemotherapy, radiotherapy, and immunotherapy. However, these approaches often come with severe side effects, treatment resistance, and limited efficacy in certain tumor types, underscoring the urgent need for alternative therapeutic strategies. This meta-analysis explores the therapeutic potential and safety profile of bacterial-based cancer therapies through a systematic review of both preclinical and clinical studies. By targeting the unique properties of the tumor microenvironment, specific bacterial species have shown an ability to preferentially colonize cancerous tissues, modulate immune responses, and serve as delivery vehicles for therapeutic agents. In preclinical models, bacterial treatments demonstrated significant tumor growth inhibition and improved survival outcomes, with minimal systemic toxicity. Clinical trials evaluated a range of bacterial species including engineered forms of Salmonella, Listeria, Clostridium, and Bifidobacterium. Findings indicated varied levels of efficacy in terms of tumor response rates, progression-free survival, and overall survival across different patient cohorts. While some bacterial therapies were associated with notable therapeutic benefits, particularly in prolonging survival and enhancing immune activation, others showed limited efficacy or were accompanied by high rates of adverse events, especially in treatments involving Listeria-based agents. Conversely, Bifidobacterium-based therapies appeared to offer a more favorable safety profile. The heterogeneity in outcomes highlights the influence of bacterial strain, tumor type, dosage, and treatment combinations. This analysis concludes that bacterial-based therapies represent a promising frontier in oncology, offering a unique mechanism of action and potential synergy with existing treatments. Nevertheless, further large-scale and controlled clinical studies are necessary to optimize bacterial selection, enhance delivery mechanisms, and mitigate toxicity risks. Advancing this therapeutic modality could significantly contribute to the development of more personalized, targeted, and effective cancer treatments in the future.

Об авторах

Prithpal Matreja

Teerthanker Mahaveer University, Moradabad, UP, India

Email: Singhmatrejaprithpal@gmail.com

MD, Professor of Pharmacology

Индия

V. K. Singh

Teerthanker Mahaveer University, Moradabad, UP, India

Email: Drvinodkumarsingh85@gmail.com

MD, Professor of Medicine

Индия, TMU MORADABAD

Ajay Kumar

Teerthanker Mahaveer University, Moradabad, UP, India

Email: drajaykumar30july@gmail.com

MD, Professor of Medicine

Индия, TMU MORADABAD

Sudhir Singh

Teerthanker Mahaveer University, Moradabad, UP, India

Автор, ответственный за переписку.
Email: singhdrsudhir4@gmail.com

MD, Professor of Microbiology

Индия, TMU MoRADABAD

Список литературы

  1. Badie, F.; Ghandali, M.; Tabatabaei, S. A.; Safari, M.; Khorshidi, A.; Shayestehpour, M.; Mahjoubin-Tehran, M.; Morshedi, K.; Jalili, A.; Tajiknia, V.; Hamblin, M. R.; Mirzaei, H. Use of Salmonella Bacteria in Cancer Therapy: Direct, Drug Delivery and Combination Approaches. Front. Oncol. 2021, 11, 624759. https://doi.org/10.3389/fonc.2021.624759. — https://doi.org/10.3389/fonc.2021.624759
  2. Basu, P.; Mehta, A.; Jain, M.; Gupta, S.; Nagarkar, R. V.; John, S.; Petit, R. A Randomized Phase 2 Study of ADXS11-001 Listeria Monocy’togenes-Listeriolysin O Immunotherapy With or Without Cisplatin in Treatment of Advanced Cervical Cancer. International Journal of Gynecological Cancer 2018, 28 (4), 764–772. https://doi.org/10.1097/IGC.0000000000001235. — https://doi.org/10.1097/IGC.0000000000001235
  3. Biot, C.; Rentsch, C. A.; Gsponer, J. R.; Birkhäuser, F. D.; Jusforgues-Saklani, H.; Lemaître, F.; Auriau, C.; Bachmann, A.; Bousso, P.; Demangel, C.; Peduto, L.; Thalmann, G. N.; Albert, M. L. Preexisting BCG-Specific T Cells Improve Intravesical Immunotherapy for Bladder Cancer. Sci. Transl. Med. 2012, 4 (137). https://doi.org/10.1126/scitranslmed.3003586. — https://doi.org/10.1126/scitranslmed.3003586
  4. Brockstedt, D G.; Giedlin, M. A.; Leong, M. L.; Bahjat, K. S.; Gao, Y.; Luckett, W.; Liu, W.; Cook, D. N.; Portnoy, D. A.; Dubensky, T. W. Listeria -Based Cancer Vaccines That Segregate Immunogenicity from Toxicity. Proc. Natl. Acad. Sci. U.S.A. 2004, 101 (38), 13832–13837. https://doi.org/10.1073/pnas.0406035101. — https://doi.org/10.1073/pnas.0406035101
  5. Brockstedt, D G.; Le, D. T.; Hassan, R.; Murphy, A.; Grous, J.; Dubensky, T. W.; Jaffee, E. M. Clinical Experience with Live-Attenuated, Double-Deleted (LADD) Listeria Monocytogenes Targeting Mesothelin-Expressing Tumors. j. immunotherapy cancer 2013, 1 (S1), P203, 20511426-1-S1-P203. https://doi.org/survical. — https://doi.org/survical
  6. Cheong, I.; Huang, X.; Bettegowda, C.; Diaz, L. A.; Kinzler, K. W.; Zhou, S.; Vogelstein, B. A Bacterial Protein Enhances the Release and Efficacy of Liposomal Cancer Drugs. Science 2006, 314 (5803), 1308–1311. https://doi.org/10.1126/science.1130651. — https://doi.org/10.1126/science.1130651
  7. Dizman, N.; Meza, L.; Bergerot, P.; Alcantara, M.; Dorff, T.; Lyou, Y.; Frankel, P.; Cui, Y.; Mira, V.; Llamas, M.; Hsu, J.; Zengin, Z.; Salgia, N.; Salgia, S.; Malhotra, J.; Chawla, N.; ChehraziRaffle, A.; Muddasani, R.; Gillece, J.; Reining, L.; Trent, J.; Takahashi, M.; Oka, K.; Higashi, S.; Kortylewski, M.; Highlander, S. K.; Pal, S. K. Nivolumab plus Ipilimumab with or without Live Bacterial Supplementation in Metastatic Renal Cell Carcinoma: A Randomized Phase 1 Trial. Nature Medicine 2022, 28 (4), 704–712. https://doi.org/10.1038/s41591-022-01694-6. — https://doi.org/10.1038/s41591-022-01694-6
  8. Duong, M T.-Q.; Qin, Y.; You, S.-H.; Min, J.-J. Bacteria-Cancer Interactions: Bacteria-Based Cancer Therapy. Exp Mol Med 2019, 51 (12), 1–15. https://doi.org/10.1038/s12276-019-0297-0. — https://doi.org/10.1038/s12276-019-0297-0
  9. Ebrahimi, H.; Dizman, N.; Meza, L.; Malhotra, J.; Li, X.; Dorff, T.; Frankel, P.; Llamas-Quitiquit, M.; Hsu, J.; Zengin, Z. B.; Alcantara, M.; Castro, D.; Mercier, B.; Chawla, N.; Chehrazi-Raffle, A.; Barragan-Carrillo, R.; Jaime-Casas, S.; Govindarajan, A.; Gillece, J.; Trent, J.; Lee, P. P.; —
  10. Felgner, S.; Kocijancic, D.; Frahm, M.; Weiss, S. Bacteria in Cancer Therapy: Renaissance of an Old Concept. International Journal of Microbiology 2016, 2016, 1–14. https://doi.org/10.1155/2016/8451728. — https://doi.org/10.1155/2016/8451728
  11. Gholami, A.; Mohkam, M.; Soleimanian, S.; Sadraeian, M.; Lauto, A. Bacterial Nanotechnology as a Paradigm in Targeted Cancer Therapeutic Delivery and Immunotherapy. Microsyst Nanoeng 2024, 10 (1), 113. https://doi.org/10.1038/s41378-024-00743-z. — https://doi.org/10.1038/s41378-024-00743-z
  12. Guo, C Bifidobacterium Breve as a Delivery Vector of IL-24 Gene Therapy for Head and Neck Squamous Cell Carcinoma in Vivo. Gene Ther 2017, 24 (11), 699–705. https://doi.org/10.1038/gt.2017.74. — https://doi.org/10.1038/gt.2017.74
  13. Gupta, K H.; Nowicki, C.; Giurini, E. F.; Marzo, A. L.; Zloza, A. Bacterial-Based Cancer Therapy (BBCT): Recent Advances, Current Challenges, and Future Prospects for Cancer Immunotherapy. Vaccines 2021, 9 (12), 1497. https://doi.org/10.3390/vaccines9121497. — https://doi.org/10.3390/vaccines9121497
  14. Hassan, R.; Alley, E.; Kindler, H.; Antonia, S.; Jahan, T.; Honarmand, S.; Nair, N.; Whiting, C. C.; Enstrom, A.; Lemmens, E.; Tsujikawa, T.; Kumar, S.; Choe, G.; Thomas, A.; McDougall, K.; Murphy, A. L.; Jaffee, E.; Coussens, L. M.; Brockstedt, D. G. Clinical Response of LiveAttenuated, Listeria Monocytogenes Expressing Mesothelin (CRS-207) with Chemotherapy in Patients with Malignant Pleural Mesothelioma. Clinical Cancer Research 2019, 25 (19), 5787– 5798. https://doi.org/10.1158/1078-0432.CCR-19-0070. — https://doi.org/10.1158/1078-0432.CCR-19-0070
  15. Howard, F H. N.; Al‐Janabi, H.; Patel, P.; Cox, K.; Smith, E.; Vadakekolathu, J.; Pockley, A. G.; Conner, J.; Nohl, J. F.; Allwood, D. A.; Collado‐Rojas, C.; Kennerley, A.; Staniland, S.; Muthana, Nanobugs as Drugs: Bacterial Derived Nanomagnets Enhance Tumor Targeting and Oncolytic Activity of HSV‐1 Virus. Small 2022, 18 (13), 2104763. https://doi.org/10.1002/smll.202104763. — https://doi.org/10.1002/smll.202104763
  16. Huh, W K.; Brady, W. E.; Fracasso, P. M.; Dizon, D. S.; Powell, M. A.; Monk, B. J.; Leath, C. A.; Landrum, L. M.; Tanner, E. J.; Crane, E. K.; Ueda, S.; McHale, M. T.; Aghajanian, C. Phase II Study of Axalimogene Filolisbac (ADXS-HPV) for Platinum-Refractory Cervical Carcinoma: An NRG Oncology/Gynecologic Oncology Group Study. Gynecologic Oncology 2020, 158 (3), 562–569. https://doi.org/10.1016/j.ygyno.2020.06.493. — https://doi.org/10.1016/j.ygyno.2020.06.493
  17. Ijaz, M.; Hasan, I.; Chaudhry, T. H.; Huang, R.; Zhang, L.; Hu, Z.; Tan, Q.; Guo, B. Bacterial Derivatives Mediated Drug Delivery in Cancer Therapy: A New Generation Strategy. J Nanobiotechnol 2024, 22 (1), 510. https://doi.org/10.1186/s12951-024-02786-w. — https://doi.org/10.1186/s12951-024-02786-w
  18. Kwon, S.-Y.; Thi-Thu Ngo, H.; Son, J.; Hong, Y.; Min, J.-J. Exploiting Bacteria for Cancer Immunotherapy. Nat Rev Clin Oncol 2024, 21 (8), 569–589. https://doi.org/10.1038/s41571-02400908-9. — https://doi.org/10.1038/s41571-02400908-9
  19. Lai, M G.; Zhang, R.; Wang, L.-S.; Zeng, W. S. Bifidobacteria Expressing Tumstatin Protein for Antitumor Therapy in Tumor-Bearing Mice. Technol Cancer Res Treat 2016, 15 (3), 498–508. https://doi.org/10.1177/1533034615581977. — https://doi.org/10.1177/1533034615581977
  20. Le, D T.; Wang-Gillam, A.; Picozzi, V.; Greten, T. F.; Crocenzi, T.; Springett, G.; Morse, M.; Zeh, H.; Cohen, D.; Fine, R. L.; Onners, B.; Uram, J. N.; Laheru, D. A.; Lutz, E. R.; Solt, S.; Murphy, A. L.; Skoble, J.; Lemmens, E.; Grous, J.; Dubensky, T.; Brockstedt, D. G.; Jaffee, E. Safety and Survival With GVAX Pancreas Prime and Listeria Monocytogenes –Expressing Mesothelin (CRS-207) Boost Vaccines for Metastatic Pancreatic Cancer. Journal of Clinical Oncology 2015, 33 (12), 1325–1333. https://doi.org/10.1200/JCO.2014.57.4244. — https://doi.org/10.1200/JCO.2014.57.4244
  21. Liang, S.; Wang, C.; Shao, Y.; Wang, Y.; Xing, D.; Geng, Z. Recent Advances in BacteriaMediated Cancer Therapy. Front. Bioeng. Biotechnol. 2022, 10, 1026248. https://doi.org/10.3389/fbioe.2022.1026248. — https://doi.org/10.3389/fbioe.2022.1026248
  22. Liu, X.; Wu, M.; Wang, M.; Duan, Y.; Phan, C.; Qi, G.; Tang, G.; Liu, B. Metabolically Engineered Bacteria as Light-Controlled Living Therapeutics for Anti-Angiogenesis Tumor Therapy. Mater. Horiz. 2021, 8 (5), 1454–1460. https://doi.org/10.1039/D0MH01582B. — https://doi.org/10.1039/D0MH01582B
  23. Lou, X.; Chen, Z.; He, Z.; Sun, M.; Sun, J. Bacteria-Mediated Synergistic Cancer Therapy: Small Microbiome Has a Big Hope. Nano-Micro Lett. 2021, 13 (1), 37. https://doi.org/10.1007/s40820020-00560-9. — https://doi.org/10.1007/s40820020-00560-9
  24. Lu, J.; Tong, Q. From Pathogenesis to Treatment: The Impact of Bacteria on Cancer. Front. Microbiol. 2024, 15, 1462749. https://doi.org/10.3389/fmicb.2024.1462749. — https://doi.org/10.3389/fmicb.2024.1462749
  25. Morales, A.; Eidinger, D.; Bruce, A. W. Intracavitary Bacillus Calmette-Guerin in the Treatment of Superficial Bladder Tumors. Journal of Urology 1976, 116 (2), 180–182. https://doi.org/10.1016/S0022-5347(17)58737-6. — https://doi.org/10.1016/S0022-5347(17)58737-6
  26. Moreo, E.; Uranga, S.; Picó, A.; Gómez, A. B.; Nardelli-Haefliger, D.; Del Fresno, C.; Murillo, I.; Puentes, E.; Rodríguez, E.; Vales-Gómez, M.; Pardo, J.; Sancho, D.; Martín, C.; Aguilo, N. Novel Intravesical Bacterial Immunotherapy Induces Rejection of BCG-Unresponsive Established Bladder Tumors. J Immunother Cancer 2022, 10 (7), e004325. https://doi.org/10.1136/jitc-2021-004325. — https://doi.org/10.1136/jitc-2021-004325
  27. Ngo, N.; Choucair, K.; Creeden, J. F.; Qaqish, H.; Bhavsar, K.; Murphy, C.; Lian, K.; Albrethsen, M. T.; Stanbery, L.; Phinney, R. C.; Brunicardi, F. C.; Dworkin, L.; Nemunaitis, J. Bifidobacterium SPP : The Promising Trojan Horse in the Era of Precision Oncology. Future Oncol. 2019, 15 (33), 3861–3876. https://doi.org/10.2217/fon-2019-0374. — https://doi.org/10.2217/fon-2019-0374
  28. Nguyen, D.-H.; Chong, A.; Hong, Y.; Min, J.-J. Bioengineering of Bacteria for Cancer Immunotherapy. Nat Commun 2023, 14 (1), 3553. https://doi.org/10.1038/s41467-023-39224-8. — https://doi.org/10.1038/s41467-023-39224-8
  29. Nuyts, S.; Van Mellaert, L.; Theys, J.; Landuyt, W.; Lambin, P.; Anné, J. Clostridium Spores for Tumor-Specific Drug Delivery: Anti-Cancer Drugs 2002, 13 (2), 115–125. https://doi.org/10.1097/00001813-200202000-00002. — https://doi.org/10.1097/00001813-200202000-00002
  30. Pal, S K. Cabozantinib and Nivolumab with or without Live Bacterial Supplementation in Metastatic Renal Cell Carcinoma: A Randomized Phase 1 Trial. Nature Medicine 2024, 30 (9), 2576–2585. https://doi.org/10.1038/s41591-024-03086-4. — https://doi.org/10.1038/s41591-024-03086-4
  31. Parks, T P.; Takahashi, M.; Hayashi, A.; Kortylewski, M.; Caporaso, J. G.; Lee, K.; Tripathi, A.; —
  32. Patyar, S.; Joshi, R.; Byrav, D. P.; Prakash, A.; Medhi, B.; Das, B. Bacteria in Cancer Therapy: A Novel Experimental Strategy. J Biomed Sci 2010, 17 (1), 21. https://doi.org/10.1186/1423-012717-21. — https://doi.org/10.1186/1423-012717-21
  33. Sedighi, M.; Zahedi Bialvaei, A.; Hamblin, M. R.; Ohadi, E.; Asadi, A.; Halajzadeh, M.; Lohrasbi, V.; Mohammadzadeh, N.; Amiriani, T.; Krutova, M.; Amini, A.; Kouhsari, E. Therapeutic Bacteria to Combat Cancer; Current Advances, Challenges, and Opportunities. Cancer Medicine 2019, 8 (6), 3167–3181. https://doi.org/10.1002/cam4.2148. — https://doi.org/10.1002/cam4.2148
  34. Shi, L.; Sheng, J.; Wang, M.; Luo, H.; Zhu, J.; Zhang, B.; Liu, Z.; Yang, X. Combination Therapy of TGF-β Blockade and Commensal-Derived Probiotics Provides Enhanced Antitumor Immune Response and Tumor Suppression. Theranostics 2019, 9 (14), 4115–4129. https://doi.org/10.7150/thno.35131. León-Letelier, R. A.; Castro-Medina, D. I.; Badillo-Godinez, O.; Tepale-Segura, A.; HuanostaMurillo, E.; Aguilar-Flores, C.; De León-Rodríguez, S. G.; Mantilla, A.; Fuentes-Pananá, E. M.; López-Macías, C.; Bonifaz, L. C. Induction of Progenitor Exhausted Tissue-Resident Memory CD8+ T Cells Upon Salmonella Typhi Porins Adjuvant Immunization Correlates With Melanoma Control and Anti-PD-1 Immunotherapy Cooperation. Front. Immunol. 2020, 11, 583382. https://doi.org/10.3389/fimmu.2020.583382. — https://doi.org/10.7150/thno.35131
  35. Shi, L.; Liu, X.; Li, Y.; Li, S.; Wu, W.; Gao, X.; Liu, B. Living Bacteria‐Based ImmunoPhotodynamic Therapy: Metabolic Labeling of Clostridium Butyricum for Eradicating Malignant Melanoma. Advanced Science 2022, 9 (14), 2105807. https://doi.org/10.1002/advs.202105807. — https://doi.org/10.1002/advs.202105807
  36. Sieow, B F.-L.; Wun, K. S.; Yong, W. P.; Hwang, I. Y.; Chang, M. W. Tweak to Treat: Reprograming Bacteria for Cancer Treatment. Trends Cancer 2021, 7 (5), 447–464. https://doi.org/10.1016/j.trecan.2020.11.004. — https://doi.org/10.1016/j.trecan.2020.11.004
  37. Sivan, A.; Corrales, L.; Hubert, N.; Williams, J. B.; Aquino-Michaels, K.; Earley, Z. M.; Benyamin, F. W.; Man Lei, Y.; Jabri, B.; Alegre, M.-L.; Chang, E. B.; Gajewski, T. F. Commensal Bifidobacterium Promotes Antitumor Immunity and Facilitates Anti–PD-L1 Efficacy. Science 2015, 350 (6264), 1084–1089. https://doi.org/10.1126/science.aac4255. — https://doi.org/10.1126/science.aac4255
  38. Song, S.; Vuai, M. S.; Zhong, M. The Role of Bacteria in Cancer Therapy – Enemies in the Past, but Allies at Present. Infect Agents Cancer 2018, 13 (1), 9. https://doi.org/10.1186/s13027-0180180-y. — https://doi.org/10.1186/s13027-0180180-y
  39. Stein, M N.; Fong, L.; Tutrone, R.; Mega, A.; Lam, E. T.; Parsi, M.; Vangala, S.; Gutierrez, A. A.; Haas, N. B. ADXS31142 Immunotherapy ± Pembrolizumab Treatment for Metastatic Castration-Resistant Prostate Cancer: Open-Label Phase I/II KEYNOTE-046 Study. The Oncologist 2022, 27 (6), 453–461. https://doi.org/10.1093/oncolo/oyac048. — https://doi.org/10.1093/oncolo/oyac048
  40. Sun, R.; Liu, M.; Lu, J.; Chu, B.; Yang, Y.; Song, B.; Wang, H.; He, Y. Bacteria Loaded with Glucose Polymer and Photosensitive ICG Silicon-Nanoparticles for Glioblastoma Photothermal Immunotherapy. Nat Commun 2022, 13 (1), 5127. https://doi.org/10.1038/s41467-022-32837-5. — https://doi.org/10.1038/s41467-022-32837-5
  41. Tomita, Y.; Ikeda, T.; Sakata, S.; Saruwatari, K.; Sato, R.; Iyama, S.; Jodai, T.; Akaike, K.; Ishizuka, S.; Saeki, S.; Sakagami, T. Association of Probiotic Clostridium Butyricum Therapy with Survival and Response to Immune Checkpoint Blockade in Patients with Lung Cancer. Cancer Immunology Research 2020, 8 (10), 1236–1242. https://doi.org/10.1158/2326-6066.CIR20-0051. — https://doi.org/10.1158/2326-6066.CIR20-0051
  42. Toso, J F.; Gill, V. J.; Hwu, P.; Marincola, F. M.; Restifo, N. P.; Schwartzentruber, D. J.; Sherry, R. M.; Topalian, S. L.; Yang, J. C.; Stock, F.; Freezer, L. J.; Morton, K. E.; Seipp, C.; Haworth, L.; Mavroukakis, S.; White, D.; MacDonald, S.; Mao, J.; Sznol, M.; Rosenberg, S. A. Phase I Study of the Intravenous Administration of Attenuated Salmonella Typhimurium to Patients With Metastatic Melanoma. Journal of Clinical Oncology 2002, 20 (1), 142–152. https://doi.org/10.1200/JCO.2002.20.1.142. — https://doi.org/10.1200/JCO.2002.20.1.142
  43. Wang, L.; Vuletic, I.; Deng, D.; Crielaard, W.; Xie, Z.; Zhou, K.; Zhang, J.; Sun, H.; Ren, Q.; —
  44. Wei, C.; Xun, A. Y.; Wei, X. X.; Yao, J.; Wang, J. Y.; Shi, R. Y.; Yang, G. H.; Li, Y. X.; Xu, Z. L.; —
  45. Wood, L M.; Paterson, Y. Attenuated Listeria Monocytogenes: A Powerful and Versatile Vector for the Future of Tumor Immunotherapy. Front. Cell. Infect. Microbiol. 2014, 4. https://doi.org/10.3389/fcimb.2014.00051. Van Pijkeren, J. P.; Morrissey, D.; Monk, I. R.; Cronin, M.; Rajendran, S.; O’Sullivan, G. C.; Gahan, C. G. M.; Tangney, M. A Novel Listeria Monocytogenes -Based DNA Delivery System for Cancer Gene Therapy. Human Gene Therapy 2010, 21 (4), 405–416. https://doi.org/10.1089/hum.2009.022. — https://doi.org/10.3389/fcimb.2014.00051
  46. Xu, W.; Ren, D.; Yu, Z.; Hou, J.; Huang, F.; Gan, T.; Ji, P.; Zhang, C.; Ma, L.; Hu, Y. BacteriaMediated Tumor Immunotherapy via Photothermally-Programmed PD1 Expression. Nanoscale Adv. 2022, 4 (6), 1577–1586. https://doi.org/10.1039/D1NA00857A. — https://doi.org/10.1039/D1NA00857A
  47. Xu, H.; Piao, L.; Wu, Y.; Liu, X. IFN-γ Enhances the Antitumor Activity of Attenuated Salmonella-Mediated Cancer Immunotherapy by Increasing M1 Macrophage and CD4 and CD8 T Cell Counts and Decreasing Neutrophil Counts. Front. Bioeng. Biotechnol. 2022, 10, 996055. https://doi.org/10.3389/fbioe.2022.996055. — https://doi.org/10.3389/fbioe.2022.996055
  48. Yan, S.; Gan, Y.; Xu, H.; Piao, H. Bacterial Carrier-Mediated Drug Delivery Systems: A Promising Strategy in Cancer Therapy. Front. Bioeng. Biotechnol. 2025, 12, 1526612. https://doi.org/10.3389/fbioe.2024.1526612. — https://doi.org/10.3389/fbioe.2024.1526612
  49. Yazawa, K.; Fujimori, M.; Amano, J.; Kano, Y.; Taniguchi, S. Bifidobacterium Longum as a Delivery System for Cancer Gene Therapy: Selective Localization and Growth in Hypoxic Tumors. Cancer Gene Ther 2000, 7 (2), 269–274. https://doi.org/10.1038/sj.cgt.7700122. — https://doi.org/10.1038/sj.cgt.7700122
  50. Yi, X.; Zhou, H.; Chao, Y.; Xiong, S.; Zhong, J.; Chai, Z.; Yang, K.; Liu, Z. Bacteria-Triggered Tumor-Specific Thrombosis to Enable Potent Photothermal Immunotherapy of Cancer. Sci. Adv. 2020, 6 (33), eaba3546. https://doi.org/10.1126/sciadv.aba3546. — https://doi.org/10.1126/sciadv.aba3546
  51. Zheng, P.; Fan, M.; Liu, H.; Zhang, Y.; Dai, X.; Li, H.; Zhou, X.; Hu, S.; Yang, X.; Jin, Y.; Yu, N.; Guo, S.; Zhang, J.; Liang, X.-J.; Cheng, K.; Li, Z. Self-Propelled and Near-InfraredPhototaxic Photosynthetic Bacteria as Photothermal Agents for Hypoxia-Targeted Cancer Therapy. ACS Nano 2021, 15 (1), 1100–1110. https://doi.org/10.1021/acsnano.0c08068. — https://doi.org/10.1021/acsnano.0c08068

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Matreja P., Singh V., Kumar A., Singh S.,

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № 77 - 11525 от 04.01.2002.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах