GENERATION OF AN IMMUNODEFICIENT IFNAR1 KNOCKOUT MOUSE LINE AND CHALLENGES OF THE TRANSGENESIS PROTOCOL USING THE C57BL/6 STRAIN



Cite item

Full Text

Abstract

The laboratory mouse is one of the most extensively studied and well-characterized model organisms in biomedical research and is widely used in virology. However, due to interspecies differences between mice and humans, certain experiments are often impossible because mice are naturally resistant to many human viruses. One possible solution is the generation of knockout mice with reduced immunity. Such models exhibit increased susceptibility to various human pathogens and enable studies of viruses for which no specific mouse models currently exist.

In this study, we report the generation of a knockout mouse line targeting the Ifnar1 gene using two CRISPR-based genome editing strategies. The first involves simultaneous exon deletion and integration of an exon flanked by loxP sites, while the second employs a two-step process to flank the exon with loxP sites without deletion. Both approaches aim to create conditional knockout models but can also produce constitutive knockouts through exon removal.

Traditionally, embryos for microinjection are obtained from first-generation hybrid females, which simplifies the procedure but requires laborious backcrossing to establish congenic lines. Modern techniques now allow the use of inbred strains for embryo collection and microinjection, significantly reducing the time needed to generate genetically modified mice.

In our work, we used the inbred C57BL/6 strain (SPF-vivarium, IC&G SB RAS, Novosibirsk) for embryo collection and microinjection. However, we encountered two main challenges: a marked decrease in the efficiency of the standard superovulation protocol and poor survival rates of injected embryos after transfer. These issues substantially lowered the overall efficiency of the transgenesis workflow and delayed the production of the desired knockout lines.

The most plausible explanation for these difficulties is genetic drift in the local mouse colony. The most effective solution is to obtain inbred mouse strains from international facilities that maintain strict genetic quality control. Such an approach would ensure genetic stability, improve reproducibility, and enhance the efficiency of genome editing experiments in inbred mouse lines.

About the authors

Natalia Anatolyevna Smetannikova

Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being (FBRI SRC VB "Vector", Rospotrebnadzor)

Email: smetannikova@vector.nsc.ru
Scopus Author ID: 6504237445

PhD, senior researcher in the Laboratory of Genome Editing (part of the Department of Genomic Research).

Russian Federation, FBRI SRC VB "Vector", Rospotrebnadzor, Koltsovo, 630559, Russia.

Guzel Ildarovna Davletshina

Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being (FBRI SRC VB "Vector", Rospotrebnadzor)

Email: davletshina_gi@vector.nsc.ru
Scopus Author ID: 57222272758

researcher in the Laboratory of Genome Editing (part of the Department of Genomic Research).

Russian Federation, FBRI SRC VB "Vector", Rospotrebnadzor, Koltsovo, 630559, Russia.

Alexyy Nikolaevich Korablev

Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being (FBRI SRC VB "Vector", Rospotrebnadzor)

Author for correspondence.
Email: korablevalexeyn@gmail.com
ORCID iD: 0000-0002-0571-6935

Candidate of Biological Sciences, senior researcher, Head of the Laboratory of Genome Editing (part of the Department of Genomic Research)

Russian Federation

References

  1. Korablev A.N., Serova I.A., Skryabin B.V. Manipulations with early mouse embryos for generation of genetically modified animals. Vavilov Journal of Genetics and Breeding., 2017, Vol.21, no. 7, pp. 758-763.
  2. Menzorov A.G., Lukyanchikova V.A., Korablev A.N., Serova I.A., Fishman V.S. Genome editing using CRISPR/Cas9 system: a practical guide. Vavilov Journal of Genetics and Breeding., 2016, Vol. 20, no. 6. pp. 930-944.
  3. Abe T., Inoue K., Kiyonari H. Efficient CRISPR/Cas9-Assisted knockin of large DNA donors by pronuclear microinjection during S-Phase in mouse zygotes. Methods in Molecular Biology., 2023, Vol. 2637, pp. 181–194.
  4. Abeynaike S., Paust S. Humanized mice for the evaluation of novel HIV-1 therapies. Frontiers in Immunology., 2021, Vol. 12, no. 636775.
  5. Barham W., Hsu M., Liu X., Harrington S.M., Hirdler J.B., Gicobi J.K., Zhu X., Zeng H., Pavelko K.D., Yan Y., Mansfield A.S., Dong H. A novel humanized PD-1/PD-L1 mouse model permits direct comparison of antitumor immunity generated by food and drug administration–approved PD-1 and PD-L1 inhibitors. Immunohorizons., 2023, Vol. 7, no. 1, pp. 125–139.
  6. Battulin N., Kovalzon V.M., Korablev A., Serova I., Kiryukhina O.O., Pechkova M.G., Bogotskoy K.A., Tarasova O.S., Panchin Y. Pannexin 1 transgenic mice: human diseases and sleep-wake function revision. International Journal of Molecular Sciences., 2021, Vol. 22, no. 10, p. 5269.
  7. Behringer R., Gertsenstein M., Nagy K.V., Nagy A. Manipulating the mouse embryo: a laboratory manual. Cold Spring Harbor Laboratory Press, 2014, 814 p.
  8. Benavides F., Rülicke T., Prins J.B., Bussell J., Scavizzi F., Cinelli P., Herault Y., Wedekind D. Genetic quality assurance and genetic monitoring of laboratory mice and rats: FELASA Working Group Report. Laboratory Animals., 2020, Vol. 54, no. 2, pp. 135–148.
  9. Browning J., Horner J.W., Pettoello-Mantovani M., Raker C., Yurasov S., DePinho R.A., Goldstein H. Mice transgenic for human CD4 and CCR5 are susceptible to HIV infection. Proc Natl Acad Sci U S A., 1997, Vol. 94, no. 26, pp. 14637-14641.
  10. Bruter A.V., Korshunova D.S., Kubekina M.V., Sergiev P.V., Kalinina A.A., Ilchuk L.A., Silaeva Y.Y., Korshunov E.N., Soldatov V.O., Deykin A.V. Novel transgenic mice with Cre-dependent co-expression of GFP and human ACE2: a safe tool for study of COVID-19 pathogenesis. Transgenic research., 2021, Vol. 30, no. 3, pp. 289–301.
  11. Chang T.K., Ho P., Liang C.T., Yu C.K. Effects of vaginal septa on the reproductive performance of BALB/cByJNarl mice. Journal of the American Association for Laboratory Animal Science: JAALAS., 2013, Vol. 52, no. 5, pp. 520–523.
  12. Chen Z. Monkey Models and HIV Vaccine Research. Advances in experimental medicine and biology., 2018, Vol. 1075, pp. 97–124.
  13. Doench J.G., Fusi N., Sullender M., Hegde M., Vaimberg E.W., Donovan K.F., Smith I., Tothova Z., Wilen C., Orchard R., Virgin H.W., Listgarten J., Root D.E. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nature biotechnology., 2016, Vol. 34, no. 2, pp. 184–191.
  14. Doetschman T. Influence of genetic background on genetically engineered mouse phenotypes. Methods in molecular biology., 2009, Vol. 530, pp. 423–433.
  15. Dong W., Mead H., Tian L., Park J.G., Garcia J.I., Jaramillo S., Barr T., Kollath D.S., Coyne V.K., Stone N.E., Jones A., Zhang J., Li A., Wang L.S., Milanes-Yearsley M., Torrelles J.B., Martinez-Sobrido L., Keim P.S., Barker B.M., Caligiuri, M.A., Yu J. The K18-Human ACE2 transgenic mouse model recapitulates non-severe and severe COVID-19 in response to an infectious dose of the SARS-CoV-2 virus. Journal of -virology., 2022, Vol. 96, no. 1.
  16. Escaffre O, Juelich T.L., Neef N., Massey S., Smith J., Brasel T., Smith J.K., Kalveram B., Zhang L., Perez D., Ikegami T., Freiberg A.N., Comer J.E. STAT-1 knockout mice as a model for wild-type Sudan virus (SUDV). Viruses., 2021, Vol. 13, no. 7, p. 1388.
  17. Estes J. D., Wong S. W., Brenchley J. M. Nonhuman primate models of human viral infections. Nature Reviews Immunology., 2018, Vol. 18, no. 6, pp. 390–404.
  18. Fletcher P., Feldmann F., Takada A., Crossland N.A., Hume A.J., Albariño C., Kemenesi G., Feldmann H., Mühlberger E., Marzi A. Pathogenicity of Lloviu and Bombali viruses in type I interferon receptor knockout mice. The Journal of Infectious Diseases., 2023, Vol. 228, no. Supplement 7, pp. S548–S553.
  19. Flier J. S. The problem of irreproducible bioscience research. Perspectives in Biology and Medicine., 2022, Vol. 65, no 3, pp. 373–395.
  20. Fujii H., Fukushi S., Yoshikawa T., Nagata N., Taniguchi S., Shimojima M., Yamada S., Tani H., Uda A., Maeki T., Harada S., Kurosu T., Lim C.K., Nakayama E., Takayama-Ito M., Watanabe S., Ebihara H., Morikawa S., Saijo M. Pathological and virological findings of type I interferon receptor knockout mice upon experimental infection with Heartland virus. Virus Research., -2024, Vol. 340, pp. 199301.
  21. Gearhart S., Kalishman J., Melikyan H., Mason C., Kohn D.F. Increased incidence of vaginal septum in C57BL/6J mice since 1976. Comparative medicine., 2004, Vol. 54, no. 4, pp. 418–421.
  22. Gordon J.W., Scangos G.A., Plotkin D.J., Barbosa J.A., Ruddle F.H. Genetic transformation of mouse embryos by microinjection of purified DNA. Proceedings of the National Academy of Sciences., 1980, Vol. 77, no. 12, pp. 7380–7384.
  23. Hogan B., Costantini F., Lacy E. Manipulating the mouse embryo: a laboratory manual. Cold Spring Harbor Laboratory, 1986, 332 p.
  24. Horii T., Morita S., Kimura M., Terawaki N., Shibutani M., Hatada I. Efficient generation of conditional knockout mice via sequential introduction of lox sites. Scientific Reports., 2017, Vol. 7, no. 1, p. 7891.
  25. Hsu P.D., Scott D.A., Weinstein J.A., Ran F.A., Konermann S., Agarwala V., Li Y., Fine E.J., Wu X., Shalem O., Cradick T.J., Marraffini L.A., Bao G., Zhang F. DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology., 2013, Vol. 31, no. 9, pp. 827–832.
  26. Jaric I., Voelkl B., Amrein I., Wolfer D.P., Novak J., Detotto C., Weber-Stadlbauer U., Meyer U., Manuella F., Mansuy I.M., Würbel H. Using mice from different breeding sites fails to improve replicability of results from single-laboratory studies. Lab Animal., 2024, Vol. 53, no. 1, pp 18–22.
  27. Koller B.H., Marrack P., Kappler J.W., Smithies O. Normal Development of Mice Deficient in beta 2M, MHC class I proteins, and CD8+ T cells. Science., 1990, Vol. 248, no. 4960, pp. 1227–1230.
  28. Lambertz R.L.O., Gerhauser I., Nehlmeier I., Gärtner S., Winkler M., Leist S.R., Kollmus H., Pöhlmann S., Schughart K. H2 influenza A virus is not pathogenic in Tmprss2 knock-out mice. Virology Journal., 2020, Vol. 17, no. 1 p. 56.
  29. Lee E.C., Liang Q., Ali H., Bayliss L., Beasley A., Bloomfield-Gerdes T., Bonoli L., Brown R., Campbell J., Carpenter A., Chalk S., Davis A., England N., Fane-Dremucheva A., Franz B., Germaschewski V., Holmes H., Holmes S., Kirby I., Kosmac M., Legent A., Lui H., Manin A., O'Leary S., Paterson J., Sciarrillo R., Speak A., Spensberger D., Tuffery L., Waddell N., Wang W., Wells S., Wong V., Wood A., Owen M.J., Friedrich G.A., Bradley A. Complete humanization of the mouse immunoglobulin loci enables efficient therapeutic antibody discovery. Nat Biotechnol., 2014, Vol. 32, no. 4, pp. 356-363.
  30. Li A., Coffey L.L., Mohr E.L., Raper J., Chahroudi A., Ausderau K.K., Aliota M.T., Friedrich T.C., Mitzey A.M., Koenig M.R., Golos T.G., Jaeger H.K., Roberts V.H.J., Lo J.O., Smith J.L., Hirsch A.J., Streblow D.N., Newman C.M., O'Connor D.H., Lackritz E.M., Van Rompay K.K.A., Adams Waldorf K.M. Role of non-human primate models in accelerating research and developing countermeasures against Zika virus infection. Lancet Microbe., 2025, Vol. 6, no. 6, p. 101030..
  31. Liu C., Xie W., Gui C., Du Y. Pronuclear microinjection and oviduct transfer procedures for transgenic mouse production. Methods Mol Biol., 2013, Vol. 1027, pp. 217-232.
  32. Longenecker G., Kulkarni A. B. Generation of gene knockout mice by ES cell microinjection. Current Protocols in Cell Biology., 2009, Vol. 44, no. 1, pp. 1-36.
  33. Lupiáñez D.G., Kraft K., Heinrich V., Krawitz P., Brancati F., Klopocki E., Horn D., Kayserili H., Opitz J.M., Laxova R., Santos-Simarro F., Gilbert-Dussardier B., Wittler L., Borschiwer M., Haas S.A., Osterwalder M., Franke M., Timmermann B., Hecht J., Spielmann M., Visel A., Mundlos S. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell., 2015, Vol. 161, no. 5, pp. 1012-1025.
  34. Marino M.W., Dunn A., Grail D., Inglese M., Noguchi Y., Richards E., Jungbluth A., Wada H., Moore M., Williamson B., Basu S., Old L.J. Characterization of tumor necrosis factor-deficient mice. Proceedings of the National Academy of Sciences., 1997, Vol. 94, no. 15, pp. 8093–8098.
  35. Masemann D., Ludwig S., Boergeling Y. Advances in transgenic mouse models to study infections by human pathogenic viruses. International Journal of Molecular Sciences., 2020, Vol. 21, no. 23, p. 9289.
  36. Miura H., Quadros R.M., Gurumurthy C.B., Ohtsuka M. Easi-CRISPR for creating knock-in and conditional knockout mouse models using long ssDNA donors. Nature Protocols., 2017, Vol. 13, no. 1, pp. 195-215.
  37. Miyasaka Y., Uno Y., Yoshimi K., Kunihiro Y., Yoshimura T., Tanaka T., Ishikubo H., Hiraoka Y., Takemoto N., Tanaka T., Ooguchi Y., Skehel P., Aida T., Takeda J., Mashimo T. CLICK: one-step generation of conditional knockout mice. BMC Genomics., 2018, Vol. 19, no. 1, p. 318.
  38. Monticelli S.R., Kuehne A.I., Bakken R.R., Coyne S.R., Lewis K.D., Raymond J.L.W., Zeng X., Richardson J.B., Lapoint Z., Williams J.L., Stefan C.P., Kugelman J.R., Koehler J.W., Herbert A.S. Characterization of a STAT-1 Knockout Mouse Model for Machupo Virus Infection and Pathogenesis. Viruses., 2025, Vol. 17, no. 7, p. 996.
  39. Moreau G.B., Burgess S.L., Sturek J.M., Donlan A.N., Petri W.A., Mann B.J. Evaluation of K18-hACE2 Mice as a Model of SARS-CoV-2 Infection. The American Journal of Tropical Medicine and Hygiene., 2020, Vol. 103, no. 3, pp. 1215–1219.
  40. Pincus S. H. Models of HIV infection utilizing transgenic and reconstituted immunodeficient mice. Drug Discovery Today: Disease Models., 2004, Vol. 1, no. 1, pp. 49–56.
  41. Ruiz S. I., Zumbrun E. E., Nalca A. Animal Models of Human Viral Diseases. Animal Models of Human Viral Diseases., 2017, pp. 853–901.
  42. Sarsani V.K., Raghupathy N., Fiddes I.T., Armstrong J., Thibaud-Nissen F., Zinder O., Bolisetty M., Howe K., Hinerfeld D., Ruan X., Rowe L., Barter M., Ananda G., Paten B., Weinstock G.M., Churchill G.A., Wiles M.V., Schneider V.A., Srivastava A., Reinholdt L.G. The Genome of C57BL/6J "Eve", the Mother of the Laboratory Mouse Genome Reference Strain. G3 (Bethesda)., 2019, Vol. 9, no. 6, pp. 1795–1805.
  43. Savenkova D.A., Gudymo A.S., Korablev A.N., Taranov O.S., Bazovkina D.V., Danilchenko N.V., Perfilyeva O.N., Ivleva E.K., Moiseeva A.A., Bulanovich Y.A., Roshchina E.V., Serova I.A., Battulin N.R., Kulikova E.A., Yudkin D.V. Knockout of the Tnfa Gene Decreases Influenza Virus-Induced Histological Reactions in Laboratory Mice. International Journal of Molecular Sciences., 2024, Vol. 25, no. 2, p. 1156.
  44. Smirnov A., Fishman V., Yunusova A., Korablev A., Serova I., Skryabin B.V., Rozhdestvensky T.S., Battulin N. DNA barcoding reveals that injected transgenes are predominantly processed by homologous recombination in mouse zygote. Nucleic Acids Research., 2019, Vol. 48, no. 2, pp. 719-735.
  45. Suzuki J., Inada H., Han C., Kim M.J., Kimura R., Takata Y., Honkura Y., Owada Y., Kawase T., Katori Y., Someya S., Osumi N. “Passenger gene” problem in transgenic C57BL/6 mice used in hearing research. Neuroscience Research., 2020, Vol. 158, pp. 6–15.
  46. Taft R. In Vitro Fertilization in Mice. Cold Spring Harbor Protocols., 2017., no. 11.
  47. Taft R.A., Davisson M., Wiles M.V. Know thy mouse. Trends in Genetics., 2006, Vol. 22, no. 12, pp. 649-653.
  48. Wang H., Yang H., Shivalila C.S., Dawlaty M.M., Cheng A.W., Zhang F., Jaenisch R. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell., 2013, Vol. 153, no. 4, pp. 910-918.
  49. Wu H., Haist V., Baumgärtner W., Schughart K. Sustained viral load and late death in Rag2-/- mice after influenza A virus infection. Virology Journal., 2010, Vol. 7, no. 1, p. 172.
  50. Zeldovich L. Genetic drift: the ghost in the genome. Lab Animal., 2017, Vol. 46, no. 6, pp. 255–257.
  51. Zhang C., Zaman L.A., Poluektova L.Y., Gorantla S., Gendelman H.E., Dash P.K. Humanized Mice for Studies of HIV-1 Persistence and Elimination. Pathogens., 2023, Vol. 12, no. 7, p. 879.
  52. Zijlstra M., Bix M., Simister N.E., Loring J.M., Raulet D.H., Jaenisch R. Beta 2-microglobulin deficient mice lack CD4-8+ cytolytic T cells. Nature., 1990, Vol. 344, no. 6268, pp. 742–746.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Smetannikova N.A., Davletshina G.I., Korablev A.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № 77 - 11525 от 04.01.2002.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies