BLOOD LEUKOCYTE PHAGOCYTIC AND CYTOKINE-PRODUCING ACTIVITY OF ANTI-PLAGUE VACCINATED BALB/C LINE MICE AGAINST THE BACKGROUND OF IMMUNOMODULATION BY POLYOXIDONIUM



Cite item

Full Text

Abstract

Polyoxidonium increases the immunogenicity and protection of the live plague vaccine, but the cellular mechanisms underlying its immunomodulating effect are not well understood. In present study, the blood granulocyte phagocytic activity (PA) of anti-plague vaccinated and not vaccinated BALB / c mice in relation to Yersinia pestis, Escherichia coli and Staphylococcus aureus was investigated using flow cytometry. The results of the phagocytic reaction were taken into account in the microvolumes of whole blood on days 3, 7 and 21 of immunogenesis. Spontaneous and CoA-induced cytokine production (IFN-γ and IL-10) was evaluated in the blood by an ELISA method. In one of the groups of animals, anti-plague vaccination was carried out against the background of immunomodulation with a polyoxidonium. It was established that in intact mice the blood granulocyte PA in relation to Y. pestis cells is twice as low as in experiments with E. coli and S. aureus cells. Anti-plague vaccination specifically activated in vitro the blood granulocyte absorptive capacity only in relation to plague microbes. Against the background of the polyoxidonium immunomodulating effect, PA increased in experiments with Y. pestis cells already on the 3rd day of immunogenesis, which is consistent with the known ability of this immunomodulator to stimulate earlier antibody genesis during anti-plague vaccination. In addition, an increase in phagocytic index values correlated with an increase in spontaneous and induced cytokine production in blood samples of animals vaccinated against the plague. The data obtained reflect the dependence of blood leukocyte PA from the pathogen type, specific antibodies and cytokines. They indicate that the polyoxidonium ability to increase the live plague vaccine protectivity may be associated with the activation of leukocyte PA to plague microbes.

About the authors

S. N. Klyueva

Russian Research Anti-Plague Institute “Microbe”

Author for correspondence.
Email: klyueva.cvetlana@mail.ru

PhD (Biology), Researcher, Department Immunology,

Saratov

Russian Federation

A. L. Kravtsov

Russian Research Anti-Plague Institute “Microbe”

Email: fake@neicon.ru

PhD, MD (Biology), Leading Researcher, Department Immunology,

Saratov

Russian Federation

S. A. Bugorkova

Russian Research Anti-Plague Institute “Microbe”

Email: fake@neicon.ru

PhD, MD (Medicine), Head, Department of Immunology,

Saratov

Russian Federation

T. N. Schukovskaya

Russian Research Anti-Plague Institute “Microbe”

Email: fake@neicon.ru

PhD, MD (Medicine), Professor, Main Research Associate, Department Immunology,

Saratov

Russian Federation

V. A. Kozhevnikov

Russian Research Anti-Plague Institute “Microbe”

Email: fake@neicon.ru

Junior Researcher, Department of Immunology,

Saratov

Russian Federation

A. Yu. Goncharova

Russian Research Anti-Plague Institute “Microbe”

Email: fake@neicon.ru

PhD (Medicine), Researcher, Department Immunology,

Saratov

Russian Federation

References

  1. Shannon J. G., Hasenkrug A. M., Dorward D. W., Nair V., Carmody A. B., Hinnebusch B. J. Yerinia pestis subverts the dermal neutrophil response in a mouse model of bubonic plague. Mbio 2013, 4, e00170- e00113.10.1128/mbio.00170-13.
  2. Кравцов А. Л., Курылина А. Ф., Клюева С. Н., Щуковская Т. Н. Модулирующий эффект полиоксидония на реактивность клеток иммунной системы при формировании противочумного иммунитета. Иммунология 2016, 37(6), 320–325.
  3. Пономарева Т. С., Дерябин П. Н., Каральник Б. В., Тугамбаев Т. И., Атшабар Б. Б., Денисова Т. Г., Закарян С. Б., Мельникова Н. Н. Влияние полиоксидония на иммуногенную и протективную активность живой чумной вакцины. Иммунология 2014, 5, 286–290.
  4. Хаитов Р. М., Пинегин Б. В. Основные задачи клинической иммунологии по изучению функциональной активности фагоцитирующих клеток. Иммунология 1995, 3, 6–10.
  5. Нестерова И. В., Колесникова Н. В., Чудилова Г. А., Ломтатидзе Л. В., Ковалева С. В., Евглевский А. А., Нгуен Т. З.Л. Новый взгляд на нейтрофильные гранулоциты: переосмысление старых догм. Часть 1 // Инфекция и иммунитет 2017, 7(3), 219– 230.
  6. Jansen W. T.M., Väkeväinen-Anttila M., Käyhty H., Nahm M., Bakker N., Verhoef J., Snippe H., Verheul A. F. Comparison of a classical phagocytosis assay and a flow cytometry assay for assessment of the phagocytic capacity of sera from adults vaccinated with pneumococcal conjugate vaccine. Clin. Diag. Lab. Immunology 2001, 8(2), 245–250.
  7. Ison C. A. Whole-blood model. Methods Mol Med 2001, 66, 317–329.
  8. Hasui M., Hirabayashi Y., Kobayashi Y. Simultaneous measurement by flow cytometry of phagocytosis and hydrogen peroxide production of neutrophils in whole blood. J. Immunol. Methods 1989, 117, 53–58
  9. White-Owen C., Alexander J. W., Sramkoski R. M., Babcock G. F. Rapid whole-blood microassay using flow cytometry for measuring neutrophil phagocytosis. J. Clin. Microbiology 1992, 30 (8), 2071–2076.
  10. Miliukienë V., Šiaurys A., Pilinkienë A., Chaustova L. Flow cytometry measurement of Saccharomyces cerevisiae phagocytosis by neutrophils in mouse blood. Biologiya 2005, 3, 69–73.
  11. Spinner J. L., Cundiff J. A., Kobayashi S. D. Yersinia pestis type III secretion system-dependent inhibition of human polymorphonuclear leukocyte function. Infec. Immunity 2008, 76 (8), 3754–3760.
  12. Du Y., Rosqvist R., Forsberg A. Role of fraction 1 antigen of Yersinia pestis in inhibition of phagocytosis. Infect. Immun. 2002, 70, 1453–1460.
  13. Клюева С. Н., Щуковская Т. Н. Влияние адъювантов нового поколения in vitro на продукцию цитокинов клетками крови вакцинированных против чумы лиц. Российский иммунологический журнал 2015, 9(18), 2, 201–208.
  14. Олиферук Н. С., Пинегин Б. В. Определение фагоцитарного числа лейкоцитов периферической крови по отношению к Staphylococcus aureus с помощью проточной цитометрии. Иммунология 2007, 4, 236–240.
  15. Landoni V. I., Chiarella P., Martire-Greco D., Schierloh P., van-Rooij en N., Rearte B., Palermo M. S., Isturiz M. A., Fernandez G. C. Tolerance to lipopolysaccharide promotes an enhanced neutrophil extracellular traps formation leading to a more efficient bacterial clearance in mice. Clinical and Experimental Immunology 2012, 168, 153–163.
  16. Исачкова Л. М., Плехова Н. Г. К развитию представлений об антиинфекционной резистентности. Эпидемиология и инфекционные болезни 2002, 1, 11–15.
  17. Девдариани З. Л., Терешкина Н. Е., Тараненко Т. М., Киреев М. Н., Терехова И. В., Григорьева Г. В., Исляева М. Н., Ермаков Н. М., Виноградова Н. А., Малахаева А. Н. Результаты модельных экспериментов по конструированию тест-системы иммуноферментной для выявления антител к Ф1 чумного микроба (ИФА-Ат-Ф1 Yersinia pestis). Проблемы особо опасных инфекций 2013, 1, 74–77.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Klyueva S.N., Kravtsov A.L., Bugorkova S.A., Schukovskaya T.N., Kozhevnikov V.A., Goncharova A.Y.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № 77 - 11525 от 04.01.2002.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies