Experimental in vitro reprogramming of CD64-CD32+CD16+CD11b+ and CD64+CD32+CD16+CD11b+ neutrophilic granulocytes by arginyl-alpha-aspartyl-lysyl-valyl-tyrosyl-arginine in modelled virus-bacterial coinfection
- Authors: Chudilova G.A.1, Nesterova I.V.1,2, Pavlenko V.N.1, Rusinova T.V.1, Kovaleva S.V.1
-
Affiliations:
- Kuban State Medical University
- Peoples’ Friendship University of Russia,
- Issue: Vol 23, No 4 (2020)
- Pages: 395-402
- Section: SHORT COMMUNICATIONS
- Submitted: 23.10.2020
- Accepted: 23.10.2020
- Published: 15.10.2020
- URL: https://rusimmun.ru/jour/article/view/928
- DOI: https://doi.org/10.46235/1028-7221-456-EIV
- ID: 928
Cite item
Full Text
Abstract
Disruption of neutrophilic granulocyte (NG) functioning underlies one of the key causes for negative polymicrobial synergism during virus-microbial co-infections. In connection with this, it is important to develop experimental models for viral-bacterial co-infections in vitro, which might allow to uncover NG involvement in effector events and assess reorganization of inter-connected functionally relevant NG receptors in response to various immunotropic agents. Understanding molecular mechanisms related to any molecule including drug molecules provides its safe use allowing them to become drug of choice. NG functional activity is associated with surface receptors CD64, CD32, CD16, CD11b, which are assigned to several NG subsets exhibiting distinct phenotypes, and their activation leads to complex processes of pathogen elimination. Study objective: to elucidate types of phenotype transition for NG subsets CD64-CD32+CD16+CD11b+ and СD64+CD32+CD16+CD11b+ and assess an opportunity for phenotype reprogramming exposed to hexapeptide arginyl-alpha-aspartyl-lysyl-valyl-tyrosyl-arginine (НP) in experimental in vitro model of viral-bacterial coinfection. Materials and methods. We examined 39 samples of peripheral blood (PВ) collected from healthy adult volunteers (7 women, 6 men) aged 21 to 32 years, subdivided into 3 groups: comparison group 1 (intact NG); comparison group 2 – model of viral-bacterial infection; Study group – to assess HP effects. Model of viral-bacterial co-infection was created by incubating PВ samples sequentially with dsRNA (10-7M) for 60 min followed by fMLP (10-7M) for 60 min, 37 °С. To assess HP effect, PC samples preincubated with dsRNA and fMLP were next exposed to HP (10-6 g/L) for 60 min at 37 °С. We analyzed percentage of CD64-CD32+CD16+CD11b+ and СD64+CD32+CD16+CD11b+NG subsets as well as receptor expression density (MFI) by flow cytometry (FC 500, Beckman Coulter, USA) using MAbs (Beckman Coulter International SA, France). Results. Transformation of CD64-CD32+CD16+CD11b+ and СD64+CD32+CD16+CD11b+NG subset phenotype was experimentally revealed in virus-bacterial model manifested as upregulated expression of all receptors examined. Our data on HP effects ambiguously demonstrated phenotype transformation in CD64-CD32+CD16+CD11b+NG, СD64+CD32+CD16+CD11b+NG in in vitro viral – bacterial coinfection model contributing to recovery of proper NG response.
About the authors
G. A. Chudilova
Kuban State Medical University
Author for correspondence.
Email: chudilova2015@yandex.ru
Chudilova Galina A. - PhD (Biology), Associate Professor, Head, Department of Clinical and Experimental Immunology and Molecular Biology, Central Research Laboratory
350061, Krasnodar, Blagoev str., 14, apt 11
Phone: 7 (918) 410-22-14
Russian FederationI. V. Nesterova
Kuban State Medical University; Peoples’ Friendship University of Russia,
Email: fake@neicon.ru
PhD, MD (Medicine), Professor, Chief Research Associate, Department of Clinical and Experimental Immunology and Molecular Biology, Central Research Laboratory; Professor, Department of Allergology and Immunology
Krasnodar
Moscow
Russian FederationV. N. Pavlenko
Kuban State Medical University
Email: fake@neicon.ru
Postgraduate Student, Department of Clinical Immunology, Allergology and Laboratory Diagnostics
Krasnodar
Russian FederationT. V. Rusinova
Kuban State Medical University
Email: fake@neicon.ru
PhD (Biology), Research Associate, Department of Clinical and Experimental Immunology and Molecular Biology, Central Research Laboratory
Krasnodar
Russian FederationS. V. Kovaleva
Kuban State Medical University
Email: fake@neicon.ru
PhD (Medicine), Associate Professor, Senior Research Associate, Department of Clinical Experimental Immunology and Molecular Biology
Krasnodar
Russian FederationReferences
- Балмасова И.П., Малова Е.С., Сепиашвили Р.И. Вирусно-бактериальные коинфекции как глобальная проблема современной медицины // Вестник РУДН. Серия: Медицина. 2018. Т. 22, № 1. С. 29-42. [Balmasova I.P., Malova E.S., Sepiashvili R.I. Viral and bacterial coinfection as a global problem of modern medicine. Vestnik RUDN. Seriya: Meditsina = Bulletin of Peoples’ Friendship University of Russia. Series: Medicine, 2018, Vol. 22, no. 1, рр. 29-42. (In Russ.)]
- Нестерова И.В., Чудилова Г.А., Ковалева С.В., Тараканов В.А., Ломтатидзе Л.В., Колесникова Н.В., Русинова Т.В., Евглевский А.А., Малиновская В.В. Нейтрофильные гранулоциты: отражение в зеркале современных представлений. UK, USA, Moscow: Capricorn Publishing, 2018. 338 с. [Nesterova I.V., Chudilova G.A., Kovaleva S.V., Tarakanov V.A., Lomtatidze L.V., Kolesnikova N.V., Rusinova T.V., Evlevsky A.A., Malinovskaya V.V. Neutrophilic granulocytes: a reflection in the mirror of modern ideas]. UK, USA, Moscow: Capricorn Publishing, 2018. 338 p
- Чудилова Г.А., Нестерова И.В. Фенотипический профиль CD64-CD16+CD32+CD11b+, CD64+CD16+CD32+CD11b+ субпопуляций нейтрофильных гранулоцитов у здоровых новорожденных, условно-здоровых детей различных возрастных групп и условно-здоровых взрослых субъектов // Российский иммунологический журнал, 2019. Т. 13, № 1. С. 53-61. [Chudilova G.A., Nesterova I.V. Phenotypic profi le subset CD64-CD16+CD32+CD11b+, CD64+CD16+CD32+CD11b+ neutrophil granulocytes in healthy newborns, conditionally healthy children of different age groups and conditionally healthy adult individuals. Rossiyskiy immunologicheskiy zhurnal = Russian Journal of Immunology, 2019, Vol. 13, no. 1, pp. 53-61. (In Russ.)]
- Alymova I.V., Portner A., Takimoto T., Boyd K.L., Babu Y.S., McCullers J.A. The novel parainfluenza virus hemagglutinin-neuraminidase inhibitor BCX 2798 prevents lethal synergism between a paramyxovirus and Streptococcus pneumoniae. Antimicrob. Agents Chemother., 2005, Vol. 49, no. 1, pp. 398-405.
- Bellinghausen C., Rohde G.G.U., Savelkoul P.H.M., Wouters E.F.M. Stassen Viral-bacterial interactions in the respiratory tract. J. Gen. Virol., 2016, Vol. 97, no. 12, pp. 3089-3102.
- Bosch A.A.T.M., Biesbroek G., Trzcinski K., Sanders E.A.M., Bogaert D. Viral and bacterial interactions in the upper respiratory tract. PLoS Pathog., 2013, Vol. 9, no. 1, e1003057. doi: 10.1371/journal.ppat.1003057.
- Bournazos S., Wang T.T., Ravetch J.V. The role and function of Fcγ receptors on myeloid cells. Microbiol. Spectr., 2016, Vol. 4, no. 6. doi: 10.1128/microbiolspec.MCHD-0045-2016.
- Brealey J.C., Sly P.D., Young P.R., Chappell K.J. Viral bacterial co-infection of the respiratory tract during early childhood. FEMS Microbiol. Lett., 2015, Vol. 362, no. 10, fnv062. doi: 10.1093/femsle/fnv062.
- Cortjens B., Ingelse S.A., Calis J.C., Valar A.P., Koendetman L., Bem R.A., van Woensel J.B. Neutrophil subset responses in infants with severe viral respiratory infection. Clin. Immunol., 2017, Vol. 176, pp. 100-106.
- Ganz T. Defensins: antimicrobial peptides of innate immunity. Nat. Rev. Immunol., 2003, Vol. 3, no. 9, pp. 710-720.
- Griffiths Е.С., Pedersen A.B., Fenton A., Petchey O.L. The nature and consequences of coinfection in humans. J. Infect., 2011, Vol. 63, no. 3, pp. 200-206.
- Grunwell J.R., Giacalone V.D., Stephenson S., Margaroli1 C., Dobosh B.S., Brown M.R., Fitzpatrick A.M., Tirouvanziam R. Neutrophil dysfunction in the airways of children with acute respiratory failure due to lower respiratory tract viral and bacterial coinfections. Sci. Rep., 2019, Vol. 9, no. 1, 2874. doi: 10.1038/s41598-019-39726-w12.
- Meskill S.D., O’Bryant S.C. Respiratory virus co-infection in acute respiratory infections in children. Curr. Infect. Dis. Rep., 2020, Vol. 22, no. 1, 3. doi: 10.1007/s11908-020-0711-8.