Serum macrophage colony-stimulating factor levels in patients with essential hypertension after SARS-CoV-2 infection

Cover Page


Cite item

Full Text

Abstract

Understanding changes in the cytokine-mediated mechanisms in immunopathogenesis of essential hypertension (EH) after COVID-19 poses a pressing scientific issue. SARS-CoV-2 exerts direct effects on macrophages with high probability altering regulatory M-CSF-VEGF-A-IL-34 axis, thereby accounting for change in cytokine-mediated patterns of hypertension progression. Immunopathogenesis of complications after SARS-CoV-2 infection and a role of M-CSF in EH pathogenesis justify study objective – to compare the serum M-CSF and VEGF-A, IL-34 levels in stage II EH patients prior to COVID-19 and one month after recovery to assess modality of altered M-CSF-mediated mechanisms behind hypertension progression. Four groups of patients were stratified depending on EH and clinical characteristics of COVID-19 (without/with pneumonia). Blood sampling was performed one month after COVID-19. The serum M-CSF and VEGF-A, IL-34 level was measured by using enzyme-linked immunosorbent assay. The data were statistically processed by using Stat Soft Statistica 13.5. Comparative analysis of serum M-CSF level in patients with stage II EH prior and after COVID-19 revealed that regardless of clinical course (with/without pneumonia) they were featured with higher levels of M-CSF one month after recovery (p < 0.001) vs baseline level. The serum VEGF-A level in patients with stage II EH did not change in papallel with increased M-CSF (458 pg/ml or more) one month after SARS CoV 2 infection. However, M-CSF stimulated rise in serum VEGF-A level and accounted for formation of marked coronary collateral network prior to infection. A relationship between the increased serum M-CSF level (higher than 392 pg/ml) and elevated percentage of COVID-19 with pneumonia in patients with stage II EH prior to the infection might be related to the hypothesis about “a role of dysregulated activation of mononuclear phagocytes in development of lung tissue damage”. The data presented prove scientific and clinical value of assessing a role for M-CSF with respect to altered cytokine-mediated patterns of EH progression after COVID-19 recovery.

About the authors

O. A. Radaeva

N.Ogarev National Research Mordovia State University

Author for correspondence.
Email: radaevamed@mail.ru

Radaeva Olga A. - PhD, MD (Medicine), Associate Professor, Professor, Immunology, Microbiology and Virology Department

430000, Republic of Mordovia, Saransk, Ulyanov str., 26а

Phone: 7 (905) 378-41-98

Russian Federation

A. S. Simbirtsev

State Research Institute of Highly Pure Biopreparations, Federal Medical-Biological Agency of Russia

Email: fake@neicon.ru

PhD, MD (Medicine), Professor, Corresponding Member, Russian Academy of Sciences, Chief Research Asociate

St. Petersburg

Russian Federation

N. M. Selezneva

N.Ogarev National Research Mordovia State University

Email: fake@neicon.ru

PhD (Medicine), Associate Professor, Hospital Therapy Department

Saransk, Republic of Mordovia

Russian Federation

M. S. Iskandyarova

N.Ogarev National Research Mordovia State University

Email: fake@neicon.ru

Assistant Professor, Immunology, Microbiology and Virology Department

Saransk, Republic of Mordovia

Russian Federation

References

  1. Радаева О.А., Симбирцев А.С. М-CSF, IL-34, VEGF-A как факторы риска развития инфаркта миокарда, острого нарушения мозгового кровообращения у больных эссенциальной артериальной гипертензией // Российский иммунологический журнал, 2015. Т. 9 (18), № 1. С. 93-101. [Radaeva, O.A., Simbirtsev A.S. М-CSF, IL-34, VEGF-A as risk factors of myocardial infarction and stroke in patients with essential hypertension. Rossiyskiy immunologicheskiy zhurnal = Russian Journal of Immunology, 2015, Vol. 9 (18), no. 1, pp. 93-101. (In Russ.)]
  2. Berg K.E., Ljungcrantz I., Andersson L., Bryngelsson C., Hedblad B., Fredrikson G.N., Nilsson J., Björkbacka H. Elevated CD14++CD16- monocytes predict cardiovascular events. Circ. Cardiovasc. Genet., 2012, Vol. 5, pp. 122-131.
  3. Carod-Artal F.J. Neurological complications of coronavirus and COVID-19. Rev. Neurol., 2020, Vol. 70, no. 9, pp. 311-322.
  4. Guzik T.J., Mohiddin S.A., Dimarco A., Patel V., Savvatis K., Marelli-Berg F.M., Madhur M.S., Tomaszewski M., Maffia P., D’Acquisto F., Nicklin S.A., Marian A.J., Nosalski R., Murray E.C., Guzik B., Berry C., Touyz R.M., Kreutz R., Wang D.W., Bhella D., McInnes I.B. COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options. Cardiovasc. Res., 2020, Vol. 116, no. 10, pp. 1666-1687.
  5. Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li H., Liu M., Xiao Y., Gao H., Guo L., Xie J., Wang G., Jiang R., Gao Z., Jin Q., Wang J., Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, Vol. 395, no. 10223, pp. 497-506.
  6. Kreutz R., Algharably E., Azizi M., Dobrowolski P., Guzik T., Januszewicz A., Persu A., Prejbisz A., Riemer T., Wang J., Burnier M.. Hypertension, the renin-angiotensin system, and the risk of lower respiratory tract infections and lung injury: implications for COVID-19. European society of hypertension COVID-19 task force review of evidence. Cardiovasc. Res., 2020, Vol. 116, no. 10, pp. 1688-1699.
  7. Liao M., Liu Y., Yuan J., Wen Y., Xu G., Zhao J., Cheng L., Li J., Wang X., Wang F., Liu L., Amit I., Zhang S., Zhang Z. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat. Med., 2020, Vol. 26, pp. 842-844.
  8. Merad M., Martin J.C. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat. Rev. Immunol., 2020, Vol. 20, no. 6, pp. 355-362.
  9. Nandi S., Cioc M., Yeung Y., Nieves E., Tesfa L., Lin H., Hsu A.W., Halenbeck R., Cheng H.Y., Gokhan S., Mehler M.F., Stanley E.R.. Receptor-type Protein-tyrosine phosphatase ζ is a functional receptor for interleukin-34. J. Biol. Chem., 2013, Vol. 288, no. 30, pp. 21972-21986.
  10. Nishiga M., Wang D.W., Han Y., Lewis D.B., Wu J.C. COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives [published online ahead of print, 2020 Jul 20]. Nat. Rev. Cardiol., 2020, pp. 1-16.
  11. Radaeva O.A., Simbirtsev A.S., Kostina J.A. The change in the circadian rhythm of macrophage colonystimulating factor content in the blood of patients with essential hypertension. Cytokine: X, 2019, Vol. 1, no. 3, 100010. doi: 10.1016/j.cytox.2019.100010.
  12. Schiopu A., Bengtsson E., Gonçalves I., Nilsson J., Fredrikson G.N., Björkbacka H. Associations between macrophage colony-stimulating factor and monocyte chemotactic protein 1 in plasma and first-time coronary events: a nested case-control study. J. Am. Heart Assoc., 2016, Vol. 5, no. 9, e002851. doi: 10.1161/JAHA.115.002851.
  13. Okazaki T., Ebihara S., Asada M., Yamanda S., Saijo Y., Shiraishi Y., Ebihara T., Niu K., Mei H., Arai H., Yambe T. Macrophage colony-stimulating factor improves cardiac function after ischemic injury by inducing vascular endothelial growth factor production and survival of cardiomyocytes. Am. J. Pathol., 2007, Vol. 171, pp. 1093-1103.
  14. Zernecke A., Weber C. Chemokines in atherosclerosis: proceedings resumed. Arterioscler. Thromb. Vasc. Biol., 2014, Vol. 34, no. 4, pp. 742-750.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Radaeva O.A., Simbirtsev A.S., Selezneva N.M., Iskandyarova M.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № 77 - 11525 от 04.01.2002.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies