MICROGLIA-DERIVED IL-6 IS REQUIRED FOR HIPPOCAMPUS-DEPENDENT LONG-TERM SPATIAL MEMORY FORMATION
- Authors: Namakanova O.1, Gogoleva V.1, Tukhovskaya E.2, Shaykhutdinova E.2, Slashcheva G.2, Ismailova A.2, Khotskin N.3, Drutskaya M.1,4
-
Affiliations:
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
- Branch of M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russia
- Institute of Cytology and Genetics, Russian Academy of Sciences, Novosibirsk, Russian Federation
- Sirius University of Science and Technology, Krasnodar Region, Russian Federation
- Section: SHORT COMMUNICATIONS
- Submitted: 25.10.2025
- Accepted: 21.11.2025
- URL: https://rusimmun.ru/jour/article/view/17342
- DOI: https://doi.org/10.46235/1028-7221-17342-MDI
- ID: 17342
Cite item
Full Text
Abstract
The influence of the immune system on the functions of the central nervous system (CNS) and behavior is mainly studied in the context of inflammation and pathology. However, recent findings highlight the crucial role of cytokines in maintaining functional state of the CNS and participating in the formation of various aspects of cognitive functions. At the same time, the cellular sources of the cytokines that mediate these effects remain unclear. It is known that elevated production of IL-6 may be associated with the development of a condition accompanied by cognitive impairments. This study examines the role of IL-6, resident immune cells of the CNS, in maintaining behavioral function in homeostasis. To examine whether IL-6-mediated signaling plays a role in maintaining normal behavioral functions, mice with tamoxifen-dependent inactivation of IL-6 in CX3CR1+ microglia were used. It was found that deletion of IL-6 from microglia did not lead to changes in anxiety behavior in the "Black-White Box" test, indicating the absence of a connection between IL-6 production by tissue-resident macrophages and anxiety disorder. At the same time, "Barnes Maze" and "Morris Water Maze" tests revealed impaired long-term spatial memory formation, manifested by reduced time spent in target sector in mice with IL-6 deficiency in microglia. Impaired long-term spatial memory formation in mice with microglial genetic inactivation of Il6 also correlated with altered expression of C1qa and C1qb genes in the hippocampus, responsible for complement-dependent synaptic pruning. However, mice with IL-6 inactivation in microglia showed no impairments in spatial orientation or short-term memory. Thus, mice with IL-6 deficiency in microglia exhibited a phenotype of impaired hippocampus-dependent long-term spatial memory, but no impairments were observed in short-term memory and anxiety behavior.
Keywords
About the authors
O. Namakanova
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
Email: olga.namakanova@gmail.com
ORCID iD: 0000-0001-6423-5843
Junior research associate, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
Russian Federation, 119334, Russian Federation , Moscow, 32, Vavilov st.V. Gogoleva
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
Email: violette.gogoleva@gmail.com
PhD, Junior research associate, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
Russian Federation, 119334, Russian Federation, Moscow, 32, Vavilov st.E. Tukhovskaya
Branch of M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russia
Email: olga.namakanova@gmail.com
PhD, senior researcher, Branch of M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russian Federation
Russian Federation, 142290, Russian Federation, Pushchino, Prospect Nauki, 6E. Shaykhutdinova
Branch of M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russia
Email: olga.namakanova@gmail.com
PhD, senior researcher, Branch of M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russian Federation
Russian Federation, 142290, Russian Federation, Pushchino, Prospect Nauki, 6G. Slashcheva
Branch of M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russia
Email: olga.namakanova@gmail.com
PhD, senior researcher, Branch of M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russian Federation
Russian Federation, 42290, Russian Federation, Pushchino, Prospect Nauki, 6A. Ismailova
Branch of M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russia
Email: olga.namakanova@gmail.com
Junior researcher, Branch of M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russian Federation
Russian Federation, 142290, Russian Federation, Pushchino, Prospect Nauki, 6N. Khotskin
Institute of Cytology and Genetics, Russian Academy of Sciences, Novosibirsk, Russian Federation
Email: olga.namakanova@gmail.com
Ph.D, Research Officer, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
Russian Federation, 630090, Russian Federation, Novosibirsk, Akademika Lavrentyeva Prospect, 10M. Drutskaya
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation;Sirius University of Science and Technology, Krasnodar Region, Russian Federation
Author for correspondence.
Email: marinadru@gmail.com
PhD, MD, Leading Research Associate, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow; Assistant Professor, Sirius University of Science and Technology, Krasnodar Region, Russian Federation
Russian Federation, 119334, Russian Federation, Moscow, 32, Vavilov st. 354340, Russian Federation, Krasnodar Region, Federal Territory "Sirius", prospect Olimpiyskiy, 1References
- Veiga-Fernandes H, Mucida D. Neuro-Immune Interactions at Barrier Surfaces. Cell. 2016 May 5;165(4):801-11. - https://www.cell.com/cell/fulltext/S0092-8674(16)30484-6?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867416304846%3Fshowall%3Dtrue
- doi: 10.1016/j.cell.2016.04.041
- Salvador AF, de Lima KA, Kipnis J. Neuromodulation by the immune system: a focus on cytokines. Nat Rev Immunol. 2021 Aug;21(8):526-541.
- - https://www.nature.com/articles/s41577-021-00508-z
- doi: 10.1038/s41577-021-00508-z.
- Hodo TW, de Aquino MTP, Shimamoto A, Shanker A. Critical Neurotransmitters in the Neuroimmune Network. Front Immunol. 2020 Aug 21;11:1869. - https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2020.01869/full
- doi: 10.3389/fimmu.2020.01869
- Gruol DL. IL-6 regulation of synaptic function in the CNS. Neuropharmacology. 2015 Sep;96(Pt A):42-54. - https://www.sciencedirect.com/science/article/abs/pii/S0028390814003980?via%3Dihub
- doi: 10.1016/j.neuropharm.2014.10.023
- Kappelmann N, Lewis G, Dantzer R, Jones PB, Khandaker GM. Antidepressant activity of anti-cytokine treatment: a systematic review and meta-analysis of clinical trials of chronic inflammatory conditions. Mol Psychiatry. 2018 Feb;23(2):335-343. doi: 10.1038/mp.2016.167.
- - https://www.atsjournals.org/doi/10.1165/rcmb.2016-0121TR?url_ver=Z39.88- https://www.nature.com/articles/mp2016167
- doi: 10.1038/mp.2016.167
- Krady JK, Lin HW, Liberto CM, Basu A, Kremlev SG, Levison SW. Ciliary neurotrophic factor and interleukin-6 differentially activate microglia. J Neurosci Res. 2008 May 15;86(7):1538-47. - https://onlinelibrary.wiley.com/doi/10.1002/jnr.21620
- doi: 10.1002/jnr.21620
- Geirsdottir L, David E, Keren-Shaul H, Weiner A, Bohlen SC, Neuber J, Balic A, Giladi A, Sheban F, Dutertre CA, Pfeifle C, Peri F, Raffo-Romero A, Vizioli J, Matiasek K, Scheiwe C, Meckel S, Mätz-Rensing K, van der Meer F, Thormodsson FR, Stadelmann C, Zilkha N, Kimchi T, Ginhoux F, Ulitsky I, Erny D, Amit I, Prinz M. Cross-Species Single-Cell Analysis Reveals Divergence of the Primate Microglia Program. Cell. 2019 Dec 12;179(7):1609-1622.e16.
- - https://www.cell.com/cell/fulltext/S0092-8674(19)31231-0?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867419312310%3Fshowall%3Dtrue
- doi: 10.1016/j.cell.2019.11.010
- Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M, Strauss-Ayali D, Viukov S, Guilliams M, Misharin A, Hume DA, Perlman H, Malissen B, Zelzer E, Jung S. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity. 2013 Jan 24;38(1):79-91. - https://www.cell.com/immunity/fulltext/S1074-7613(12)00548-1?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1074761312005481%3Fshowall%3Dtrue
- doi: 10.1016/j.immuni.2012.12.001
- Quintana A, Erta M, Ferrer B, Comes G, Giralt M, Hidalgo J. Astrocyte-specific deficiency of interleukin-6 and its receptor reveal specific roles in survival, body weight and behavior. Brain Behav Immun. 2013 Jan;27(1):162-73. - https://www.sciencedirect.com/science/article/abs/pii/S0889159112004734?via%3Dihub
- doi: 10.1016/j.bbi.2012.10.011
- Chourbaji S, Urani A, Inta I, Sanchis-Segura C, Brandwein C, Zink M, Schwaninger M, Gass P. IL-6 knockout mice exhibit resistance to stress-induced development of depression-like behaviors. Neurobiol Dis. 2006 Sep;23(3):587-94. - https://www.sciencedirect.com/science/article/abs/pii/S096999610600115X?via%3Dihub
- doi: 10.1016/j.nbd.2006.05.001
- Baier PC, May U, Scheller J, Rose-John S, Schiffelholz T. Impaired hippocampus-dependent and -independent learning in IL-6 deficient mice. Behav Brain Res. 2009 Jun 8;200(1):192-6. https://www.sciencedirect.com/science/article/abs/pii/S0166432809000370?via%3Dihub
- doi: 10.1016/j.bbr.2009.01.013
- Vogelzangs N, de Jonge P, Smit JH, Bahn S, Penninx BW. Cytokine production capacity in depression and anxiety. Transl Psychiatry. 2016 May 31;6(5):e825. https://www.nature.com/articles/tp201692
- doi: 10.1038/tp.2016.92
- Gogoleva VS, Nguyen QC, Drutskaya MS. Microglia and Dendritic Cells as a Source of IL-6 in a Mouse Model of Multiple Sclerosis. Biochemistry (Mosc). 2024 May;89(5):904-911. http://protein.bio.msu.ru/biokhimiya/contents/v89/full/89050904.html
- doi: 10.1134/S0006297924050109
- Takao K, Miyakawa T. Light/dark transition test for mice. J Vis Exp. 2006 Nov 13;(1):104. https://app.jove.com/t/104/lightdark-transition-test-for-mice
- doi: 10.3791/104
- Sellgren CM, Gracias J, Watmuff B, Biag JD, Thanos JM, Whittredge PB, Fu T, Worringer K, Brown HE, Wang J, Kaykas A, Karmacharya R, Goold CP, Sheridan SD, Perlis RH. Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning. Nat Neurosci. 2019 Mar;22(3):374-385. https://www.nature.com/articles/s41593-018-0334-7
- doi: 10.1038/s41593-018-0334-7
- Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, Ransohoff RM, Greenberg ME, Barres BA, Stevens B. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron. 2012 May 24;74(4):691-705. https://www.cell.com/neuron/fulltext/S0896-6273(12)00334-0?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0896627312003340%3Fshowall%3Dtrue
- doi: 10.1016/j.neuron.2012.03.026
- Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, Giustetto M, Ferreira TA, Guiducci E, Dumas L, Ragozzino D, Gross CT. Synaptic pruning by microglia is necessary for normal brain development. Science. 2011 Sep 9;333(6048):1456-8. https://www.science.org/doi/10.1126/science.1202529
- doi: 10.1126/science.1202529
- Kim K, Abramishvili D, Du S, Papadopoulos Z, Cao J, Herz J, Smirnov I, Thomas JL, Colonna M, Kipnis J. Meningeal lymphatics-microglia axis regulates synaptic physiology. Cell. 2025 May 15;188(10):2705-2719.e23. https://www.cell.com/cell/fulltext/S0092-8674(25)00210-7
- doi: 10.1016/j.cell.2025.02.022
Supplementary files


