BLASTIC PLAZMATSITOIDS DENDRITOCELL TUMOUR: EXPERIENCE OF DIAGNOSTICS AND TREATMENT IN THE SVERDLOVSK REGIONAL ONCOHEMATOLOGICAL CENTER

Cover Page

Cite item

Full Text

Abstract

Aim: to analyze the case of blastic plasmacytoid dendritic cell neoplasm (BPDN) detection and treatment in Sverdlovsk Regional Hematological Centre (Ekaterinburg). Bone marrow and peripheral blood samples obtained from female, aged 32, treated in Sverdlovsk Regional Hematological Centre during the Jan-Marth 2014. Diagnosis of BPDN verified using cytology, cytochemistry and immunophenotyping. Cytogenetic analysis was realized using G-banding. Detection of mutations in exons 12-13 ASXL1, exons 18-26 DNMT3A, exons 12-15 and 19-21 FLT3, exons 7-12 and 16-19 KIT, exons 1-4 KRAS, exons 9-12 NPM1, exons 1-4 NRAS, exons 4-11 ТР53, exons 6-9 WT1 genes was performed using direct sequencing. Cytological characterization of BPDN blast cells: large cells with oval, reniform nuclei with delicate chromatin structure, with one or two, at least - several small nucleoli, with wide basophilic cytoplasm and bright perinuclear area, richly vacuolated. In cytochemistry lipids is positive in 10.0 % of blasts, glycogen -6.0 %. The primary method of differential diagnosis of BPDN in case study was the identification of blast cells in the bone marrow. Immunophenotype of blast cells was CD4, CD15, CD33, CD38, CD56, CD64, CD65, HLA-DR(+), MPO-cyt (+/-). Karyotype was 48, XX, add(1)(p36), +6, +8 [8]. In case 2 gene mutations were co-existed in samples: KIT gene insertion and TP53 gene non-synonymous substitution с. 215 C>G. Coding sequence the remaining exons of the investigated genes is fully consistent with "wild type".

About the authors

A. B. Vinogradov

Ministry of Health of Sverdlovsk region; GBUZ SO "Sverdlovsk regional clinical hospital No. 1"

Author for correspondence.
Email: noemail@neicon.ru
Russian Federation

A. B. Rezaykin

FGBOU VO "The Ural state medical university" of the Russian Ministry of Health

Email: noemail@neicon.ru
Russian Federation

P. B. Sazonov

FGBOU VO "The Ural state medical university" of the Russian Ministry of Health

Email: noemail@neicon.ru
Russian Federation

D. R. Salakhov

GBUZ SO "Sverdlovsk regional clinical hospital No. 1"

Email: noemail@neicon.ru
Russian Federation

A. G. Sergeyev

FGBOU VO "The Ural state medical university" of the Russian Ministry of Health

Email: noemail@neicon.ru
Russian Federation

References

  1. Swerdlow S. H., Campo E., Harris N. L. et al. WHO classification of tumors of haematopoietic and lymphoid tissues. IARC, Lyon, 2008, 439.
  2. Vardiman J. V., Thiele J., Arber D. A. et al. The 2008 revision of the WHO classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009, 114 (5), 937-952.
  3. Редкие гематологические болезни и синдромы. Под ред. М. А. Волковой. Практическая медицина, Москва 2011, 384 с.
  4. Френкель М. А., Баранова О. Ю., Антипова А. C., Купрышина Н. А., Тупицын Н. Н. NK-клеточный лимфобластный лейкоз/лимфома (обзор литературы и собственные наблюдения). Клиническая онкогематология 2016, 2, 208-217.
  5. Виноградов А. В. Разработка технологии детекции мутаций генов CDKN 2A/ARF, FLT3, KIT, NPM1, NRAS, TET2, TP53, WT1 при острых миелоидных лейкозах. Российский онкологический журнал 2013, 4, 34-35.
  6. Виноградов А. В., Резайкин А. В., Изотов Д. В., Cергеев А. Г. Применение технологии прямого автоматического секвенирования для детекции мутаций генов ASXL1, DNMT3A, FLT3, KIT, NRAS, TP53 и WT1 при острых миелоидных лейкозах с неуточненым кариотипом. Вестник Уральской медицинской академической науки 2016, 4, 38-51.
  7. Виноградов А. В., Резайкин А. В., Cергеев А. Г. Детекция точечных мутаций в гене DNMT3A при острых миелоидных лейкозах методом прямого автоматического секвенирования. Бюллетень сибирской медицины 2015, 1, 18-23.
  8. Виноградов А. В., Резайкин А. В., Cергеев А. Г. Детекция точечных мутаций генов KRAS и NRAS при острых миелоидных лейкозах с использованием технологии прямого автоматического секвенирования. Вестник Башкирского университета 2014, 3, 845-847.
  9. Tamura K., Peterson D., Peterson N. et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28 (10), 2731-2739.
  10. Edlund K., Larsson O., Ameur A., Bunikis I., Gyllensten U., Leroy B., Sundstrom M., Micke P., Botling J., Soussi T. Data-driven unbiased curation of the TP53 tumor suppressor gene mutation database and validation by ultradeep sequencing of human tumors. Proceedings of the National Academy of Sciences of the United States of America. 2012, 109, 9551-9556.
  11. Программное лечение заболеваний системы крови. Cборник алгоритмов диагностики и протоколов лечения заболеваний системы крови. Под ред. В. Г. Cавченко. Практика, Москва 2012, 1056 с.
  12. Rauh M. J., Rahman F., Good D., Silverman J., Brennan M. K., Dimov N., Liesveld J., Ryan D. H., Burack W. R., Bennett J. M. Blastic plasmacytoid dendritic cell neoplasm with leukemic presentation, lacking cutaneous involvement: case series and literature review, Leuk Res. 2012, 36 (1), 81-86.
  13. Heldin C. H., Lennartsson J. Structural and functional properties of platelet-derived growth factor and stem cell factor receptors. Cold Spring Harb. Perspect. Biol. 2013,5(8), a009100.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Vinogradov A.B., Rezaykin A.B., Sazonov P.B., Salakhov D.R., Sergeyev A.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № 77 - 11525 от 04.01.2002.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies